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Strong magnetic fields
induced by relativistic heavy-ion collisions
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Z~ 80, v>0.99999 c, B> m2
Length scale ~ 1/Aqp e L My
One can study the interplay btw QCD and QED.



Besides,

> Weyl & Dirac semimetals

» Strong B field by lattice QCD simulations
» Neutron stars/magnetars

> High intensity laser fields

» Cosmology



Chiral fluid in a magnetic field
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Anomaly-induced transports pv = (pr +pir)/2
in a magnetic OR vortex field ta = (tr — pir)/2
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Non-dissipative transport phenomena with
time-reversal even and nonrenormalizable coefficients.

Anomaly relation: g,/ = q]%C'AE - B '
1
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Cf., An interplay between the B and w leads to a new nonrenormalizable transport

coefficient for the magneto-vorticity coupling.

KH and YYin, Phys.Rev.Lett. 117 (2016) 152002 [1607.01513 [hep-th]]
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Low-energy effective theory
of the chiral fluid in a dynamical magnetic field
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Chiral magnetohydrodynamics
(Chiral MHD, or anomalous MHD)



Plan for the rest of talk

1. Formulation of the chiral magnetohydrodynamics (chiral MHD)

--- Finite chirality imbalance (np # n;)
--- Dynamical magnetic field

2. Collective excitations with the linear analysis wrt év and 68B.
(MHD has a fluctuation of dynamical magnetic field 6B.)

3. Summary



Formulating the chiral MHD



Anomalous hydrodynamics
in STRONG & DYNAMICAL magnetic fields

-- Anomalous hydrodynamics 4 # 0, B ~ O(0A) and external

Son & Surowka

-- Anomalous magnetohydrodynamics (MHD) 114 75 0, B ~ (9(1)

This work. and dynamical



Anomalous hydrodynamics
in STRONG & DYNAMICAL magnetic fields

-- Anomalous hydrodynamics 4 # 0, B ~ O(0A) and external

Son & Surowka

-- Anomalous magnetohydrodynamics (MHD) 114 75 0, B ~ (9(1)

This work. and dynamical
Slow variables in chiral MHD: n: # density of axial charge
Neutral plasma (n, = 0)
no Ru v
{67 u, b ? and W’A} No E-field in the global equilibrium

EoM: 9, T} 1 en = 0, 0, 1M =0, 0,5 = —CaE B,

Cy



Constitutive eqgs. in the ideal order
determined by the entropy conservation

T{g; —  eutu’ — XA*Y — Y B BY

~ ARV — gHV o, AMY —

P - g B v
E-field is first order.
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naAu B(ty¥) is absent in T*” when ny = 0.



Constitutive eqgs. in the ideal order
determined by the entropy conservation

T{g)j —  eutu’ — XA*Y — Y B*BY
~ ARV — gHhY BV LA,u,r/ —0
P - g B v
) E-field is first order.

: _ "

J A(0) naAy By) is absent in T*” when ny = 0.

From EoM + thermodynamic relation ds = %(de — padna — H,dB")
O,(sut) = w-0s4s0-u
= (p—X)0-u+ (H" -YB")B - 0u,
= 0 for the ideal part.



Constitutive eqgs. in the ideal order
determined by the entropy conservation

T{g)j —  eutu’ — XA*Y — Y B*BY
~ AMY — gV _ v (. LA;W —0
P - B g STer s
) E-field is first order.

: _ "

J A(0) naAy By) is absent in T*” when ny = 0.

From EoM + thermodynamic relation ds = %(de — padna — H,dB")
O,(sut) = w-0s4s0-u
= (p—X)d -u+ (H*" —YB")B - du,
= 0 for the ideal part.
Therefore, T(”é) — eul'u” — pAFY — ,u_lB‘u’BV

e and p are the total (luid+magnetic) energy and pressure.



Constitutive eqgs. and the entropy generation in the first order

™ = Ty + 10, Note that 0,j% = —CaLf} B,
By — ey,
Y
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The zeroth order term T(%j reproduces
E (1)B  the conventional MHD.



Constitutive eqgs. and the entropy generation in the first order

Y n
THY T(L(L)I)/ 4 T(’il)j Note that 0,7 = _CAE(l)BH'
~ ~ The zeroth order term 77 reproduces
_ Qv
Fr = F(o) o EuuaﬁuaE(l)ﬁ the conventional MHD. v
-IJ, L .,_1, -,_L y , »
Ja = Ja TJaw T4 By daay ~ 00")

The second law of the thermodynamics 0,,(su*) > 0 constrains
the tensor structures of the first order corrections.



Constitutive eqgs. and the entropy generation in the first order

Y T
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The second law of the thermodynamics 0,,(su*) > 0 constrains
the tensor structures of the first order corrections.

Computing the entropy current,
au (Suu + 0(61)) — T(qgau(ﬁuv) - jz(l)au(B/«LA)
—FEéii){MACABM — Eﬂygﬁul/(‘?&(ﬁﬂﬁ)}



Constitutive eqgs. and the entropy generation in the first order

Y n
THY T(L(L)I)/ 4 T(l;f; Note that 0,y = —Call; By.
~ ~ The zeroth order term 77 reproduces
_ Qv
Fr = F(o) o EuyaﬁuaE(l)ﬁ the conventional MHD. v
‘/J’ p— .,"L ',JJ 2 A - (L
Ja = Ja TJaw T4 By daay ~ 00")

The second law of the thermodynamics 0,,(su*) > 0 constrains
the tensor structures of the first order corrections.

Computing the entropy current,
au (Suu + O(al)) — T(ql)/aﬂ(ﬁuv) - jﬁ(l)au(ﬁﬂfl)
—FEFU{MACABM — ewaﬁu”(‘ﬂg(ﬁﬂﬁ)}

= Eé‘i)XWE(VI), for example.




Insuring the semi-positivity with bilinear forms

Positivity is insured by a bilinear form: Eé”’l)XWEé’l) >0
Xy = o)buby — 01 (g — upty + 0,0y) — oan ewaguo‘bﬁ

b* = —B*/B? breaks a spatial rotational symmetry.
o1 = 0, but ogan o< py.
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Insuring the semi-positivity with bilinear forms

Positivity is insured by a bilinear form: EE‘l)XWEE’U >0
Xy = o)buby — 01 (g — upty + 0,0y) — oan ewaguo‘bﬁ

b* = —B*/B? breaks a spatial rotational symmetry.
o1 = 0, but ogan o< py.

Therefore, we get a “constitutive eq.” of the E-field:

EE”U — X_l’“LP{MACABp — Epvaﬁuyaa(ﬁHﬁ)}

.. KH, Hirono, Yee, Yin
Similarly,

T(‘gé‘u(ﬁu,,) > () provides 5 shear and 2 bulk viscous coefficients

Landau & Lifshitz; Huang, Sedrakian, & Rischke; Tuchin; Hernandez & Kovtun; ...

_jﬁi(l)au(BMA) >0 3 diffusion coefficients



Conductivities: CME and dissipative terms

From the constitutive eq. of E'(“’l) and the Maxwell eq.,

Jiy = CapaB" + [U|ET + o B + UHauE“’mBUubaE,e] + -

The CME current is completely fixed by C,, and is necessary for
insuring the semi-positive entropy production.

The CME has the universal form in the MHD regime as well.

There appear the longitudinal and transverse Ohmic conductivities
due to the breaking of the rotational symmetry.



Conductivities and viscosities in strong B fields

Longitudinal, transverse, and Hall currents;
5 shear and 2 bulk viscous coefficients.

In the LLL, charged fermions transport the
charge and momentum only along the B.

Computation by the perturbation theory at finite T and B

Longitudinal conductivity

KH, S.Li, D.Satow, H.-U. Yee, 1610.06839 [hep-ph];
1610.06818 [hep-ph].

Longitudinal bulk viscosity
KH, X.-G.Huang, D.Satow, D.Rischke, 1708.00515 [hep-ph].



Phases of the collective excitations
and instabilities from a linear analysis



Collective excitations in MHD without anomaly

2 transverse waves (Alfven waves)
4 longitudinal waves (fast and slow magneto-sonic waves)

* Magnetic lines move together with the fluid volume.

Oscillation
: . . Transverse Alfven wave
Tension of B-field = Restoring force B2
Fluid energy density = Inertia Va = g

€+ p+ B}



Alfven wave from a linear analysis
BO#Oa T>07 /*LV:O

0. Stationary solutions
ut = (170)7 B = (07B0)7 jM — (070)

\ 4

1. Transverse perturbations\
vV — v+ 0V
L By, — By + 0B )
‘ Linearlize the set of hydrodynamic egs.
with respect to the perturbation.

/2 Wave equation B2 Transverse wave \
2 _ 0 2 propagating along
at oB (t’ Z) N € + paz 5B(t’ Z) background B,
\_ Alfven wave velocity B, | k Y,

Same wave equation for év
-2 Fluctuations of B and v propagate together.



How does the CME change the
hydrodynamic waves in chiral fluid?

--- Drastic changes by only one term in the current

j“ — UCMEB“



rlvbT — (Cs 5€f? 6UL7 52}27 6b27 5’01, 5b1) Z((l?’ %%ff))

~—_— B (V-B=0) (2d.o.f)

6 degrees of freedom

My =V where w = Vk




wT — (Cs (ng? 6UL7 52}27 6b27 5’01, 5b1) 'i((l?’ %%ff))

N e |B (V- B = 00) (2 d.0.£.)

6 degrees of freedom
My =V where w=VEk

6 X 6 matrix from the linearlized EoMs

M = My+eq My
‘ ’ €A = OCME/C

When 14 = 0, we have M = M. M,: Modification by a finite pA

The solutions reproduce the Alfven and magneto-sonic waves in MHD.




wT — (CS (ng,(S’UL,(S’UQ, 6b2,5vl,5bl) Z((lg(ii%ff))

N e |B (V- B = 00) (2 d.0.£.)

6 degrees of freedom
My =V where w=VEk

6 X 6 matrix from the linearlized EoMs

M = My+eqx My
‘ ’ €A = OCME/C

When 114 = 0, we have M = M. M,: Modification by a finite pA

The solutions reproduce the Alfven and magneto-sonic waves in MHD.

Eigenvalues V: Dispersion relations
Eigenvectors {: Polarizations



“Phase diagram” of the eigenmodes
Secular eq. is a cubic eq. of w?

--- 3 modes propagating in the opposite directions (6 solutions in total)

(w2 — xl)(w4 + wa - C) =0 x1: Real solution



“Phase diagram” of the eigenmodes
Secular eq. is a cubic eq. of w?

--- 3 modes propagating in the opposite directions (6 solutions in total)
2 4 2
(w — 331)((.0 + bw” + C) =0 21: Real solution

Stability of the waves from classification of solutions

25

/—-\2.0 B
T A
S k
\\gﬁ 1.5
< 6
=y
O
< 1 real and 2 pure imag. sols.
=< 1 real and 2 complex sols.
Q"q 035 .
®) 3 real solutions
O
.C% 0'% 02 04 06 08 - 6/(7112)

Direction of wave wrt B Alfven and magneto-sonic waves



ReV/ua

Dispersion relations of the waves

Real part of V Imaginary part of V

1.0l : : . 15} -
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""""""" : .....--“" : -1.0
o= :
10} =T : : -1.5
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
Caun/(T up) (a) Capa/(T up) (b)

There is a pair of modes (green) which are stable in any phase.
[Will not be focused hereafter.]



ReV/up

Dispersion relations of the waves
Real part of V Imaginary part of V

ImV/up

1.0 1.5 20

Capal(a up) (b)

1
2.0 0.0 05

0.0 0.5 1.0 1.5

Calal(T up) (a)



ReV/ua

Dispersion relations of the waves

Real part of V
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| Stable ——
Small 14

ImV/up
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Polarizations on the Poincare sphere with a varying p,

U_] b] EAV

vo by u% cos@ —V?

Stokes vector
(v — b3, 2Re b1 b5] , 2T [by 53]

S = 2 2
by + b3

Equator: Linear polarizations
Upper and lower hemispheres: R and L polarizations
(Poles: R and L circular polarizations)



Polarizations on the Poincare sphere with a varying p,

83 (5] B b] B EAV
l vg by uj cosf —V?2
R Hel \ Stokes vector
Linear polarizations :
(1, = 0) : (b% —b2,9Re b1 b3],2Im by bg])
5 =

b2 + b3

Linear polarizations ]
(HA = 0)

Equator: Linear polarizations

Upper and lower hemispheres: R and L polarizations
(Poles: R and L circular polarizations)



Polarizations on the Poincare sphere with a varying p,

83 " bl EA %

4 vg_g_ui{:ﬂs@—vz

Stokes vector

(b% — b2,9Re [by b3], 2Im [by B3] )
‘ o b3 + 53

-
--------
-
-

Linear polarizations ]
(HA = 0)

Equator: Linear polarizations

Upper and lower hemispheres: R and L polarizations
(Poles: R and L circular polarizations)



New hydrodynamic instability in a chiral fluid

Signs of the imaginary parts
(Damping/growing modes in the |
hydrodynamic time evolution)

Positive Negative
(Damping) (Growing)
When pugq >0
Helicity decomposition LH mode RH mode
(Circular R/L polarizations) '{;\'{.fv’ b
V X er/L = tegr/L b -

!\x W ——



New hydrodynamic instability in a chiral fluid

Signs of the imaginary parts

(Damping/growing modes in the T

hydrodynamic time evolution)
Positive | Negative
(Damping) (Growing)
When pg >0 | |
When puy <0
Helicity decomposition LH mode RHL_:_r_hode
(Circular R/L polarizations) Ty =
V X €R/L = :I:BR/L ’:

A helicity selection occurs, depending on



Helicity conversions
as the topological origin of the instability

Chiral imbalance btw Chiral Plasma Instability (CPI)  Magnetic helicity
R and L fermions 5 dSZC B.A

« 660\ V

Tw - Vfuid

Hirono

V

Fluid helicity (structures of vortex strings)




Helicity conversions
as the topological origin of the instability

Chiral imbalance btw Chiral Plasma Instability (CPI)  Magnetic helicity

R and L fermions 5 dSZC B.A
v

Real -time & beyond-linear analysis demande'""'”-

ﬂHwono
/dda’:w  Vfuid
Vv

Fluid helicity (structures of vortex strings)




Summary

Formulation
Second law of thermodynamics determines the form of

the CME current, reproducing the universal form.

Phases of the collective excitations and instabilities
The CME drastically changes the time evolution of the

chiral fluid in a B-field.

- Chiral fluid is not stable against a small perturbation on v and B.
- One of the helicities is strongly favored against the other due to a finite pA.

Helical excitations




Backup slides



Hydrodynamic variables when uVv =0

(9th — —VJV = —0oV - -FE = —O0ONy

Dujyy =0 Ohm'’s law Gauss’s law
m) ny =n(t=0)exp(—ot)

Therefore, when t > 1/0, ny ~ 0.

1
E=—-J—=0
o)

E* in the rest frame is damped out quickly in a highly conducting plasma.

We work in the world after the E-field is damped out (Ideal MHD regime).

E* = 0(0") and is given by a function
of the hydrodynamic variables, a “constitutive equation.”




Estimate of the relaxation time of n_A

Steady state: o, =J e EF = CAFA pu
a

Ci (=B

Oy = — - [
4
a = (ox) / [C} (—=B?)]

X = (Ona /Opa)

(Relaxation time of E ~ 1/0) << (Our time scale) << (Relaxation time of nA ~ o)

The window is wider for a larger o .



My =Vy where w=Vk 08 = der/(epo + pso + Bp)
wT — (CS 5€f? 5UL3 5U23 5an 5’017 5b1) €A — OAMA/O-

uj = Bi/(ef +py + Bj)
M = My +eq My

When uy < 1,

0 Co 0 0 0 0 /0 0 0 0 0 0
Cs 0 0 —usind 0 0 0O 0 0 0 0 0
0 0 0 —u cos 0 0 0 vo_ Lo o0 0o 00
0  —wuasin® —uaqcosf 0 0 0 AT 000 0 01
0 0 0 0 0 —1u cost 0O 0 0 0 0 0

0 0 0 0 —up cost 0 \{) 0o 0 -1 0 0

g -

(w = cos§) [w? = {1+ (cu/ua) }w + (ce/ua)” cos” 0] | +{(en /un)® wlw — (ca/ua)? }} O

w=V?/uy ; Effects of anomaly

Alfven wave, fast and slow magneto-sonic waves, when g, = 0.

M, 0 =




Dotted: Without anomaly effects
[Alfven (red), fast sonic (blue), slow sonic (green)]

Solid: With anomaly effects which mix the waves
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