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I The phase diagram of QCD displays a rich set of physically interesting phenomena, such as
the deconfinement transition and the restoration of chiral symmetry, which are currently
investigated experimentally (RHIC, LHC, FAIR, ...)

I The thermal properties of QCD and QCD-like theories in the high-temperature, µ = 0 region
are particularly well suited for being studied on the lattice, due to the non-perturbative
nature of the deconfinement transition.

I Enormous progress in full-QCD lattice calculations for the equation of state has been made
recently with staggered fermions: continuum results with 2 + 1 dynamical flavours with
HISQ [HotQCD, 2014] and stout [Wuppertal-Budapest, 2014] actions
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More recent progress at even higher temperatures 2 + 1 [Bazavov et al., 2017] and 2 + 1 + 1
flavours [Borsanyi et al., 2016] (shown below)

Still, several challenges remain (such as a determination with Wilson fermions with comparable
accuracy) and new, independent checks are required

→ need for new techniques!
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1 The equation of state on the lattice
...using the integral method
...with the gradient flow
...in a moving frame

2 A non-equilibrium method for equilibrium thermodynamics
Jarzynski’s equality

3 A comparison of results for the SU(3) e.o.s.
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The integral method

The pressure p in the thermodynamic limit equals the opposite of the free energy density

p ' −f =
T

V
log Z(T ,V )

A widely used technique to estimate it on the lattice is the “integral method” [Engels et al., 1990]

p(T ) =
1

a4

1

Nt N3
s

∫ βg (T )

0
dβ′g

∂ log Z

∂β′g

where the integrand is calculated from plaquette expectation values.

An additive renormalization in the form of a subtraction of T = 0 plaquette expectation values is
required for each β

p(T )

T 4
−

p(T0)

T 4
0

= 6Nt
4
∫ β(T )

β(T0)
dβ′ (〈Up〉T − 〈Up〉0)

and so the primary observable is the trace of the energy momentum tensor ∆ = Tµµ

∆(T )

T 4
= −N4

t
∂β

∂ log a
[6 (〈Up〉T − 〈Up〉0)]
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Thermodynamics from the gradient flow

Yang-Mills gradient flow [Luscher, 2010], [Naranayan and Neuberger,2006]

Small-t expansion relates non-zero t observables with the renormalized observables of the original
theory [Luscher and Weisz,2011]

Õ(t, x) −→
t→0

∑
i

ci (t)OR
i (x)

In the case of the energy-momentum tensor (see also [Del Debbio,Patella and Rago,2017]), one can
build [Suzuki, 2013]

Tµν(x , t) =
1

αŨ (t)
Ũµν(t, x) +

δµν

4αẼ (t)

(
Ẽ(t, x)− 〈Ẽ(t, x)〉0

)
where Ẽ(t, x) and Ũµν(t, x) are dimension-4 gauge invariant operators.
From the t → 0 extrapolation

T R
µν = lim

t→0
Tµν(x , t)

one can extract, for example

ε = −〈T R
00(x)〉 p =

1

3

3∑
i=1

〈T R
ii (x)〉

Double extrapolation (in a and t) is required.
First study with Wilson fermions available [Taniguchi et al.,2017]
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Thermodynamics in a moving frame

Main idea: in relativistic thermal theories the entropy is proportional to the total momentum of
the system as measured by a moving reference system

I shifted boundary conditions are imposed:

Uµ(Lt ,~x) = Uµ(0,~x − Lt
~ξ )

I the temperature of the system is now given by

T =
1

Lt

√
1 + ~ξ2

I in this context new Ward identities can be derived (see also work on the renormalization of the
energy-momentum tensor [Giusti and Pepe,2015])

In particular one can extract the entropy density s(T ) [Giusti and Meyer,2013]

s(T ) = −
Lt (1 + ~ξ2)

3
2

ξk
〈T0k 〉~ξ ZT

where ZT is a renormalization constant that has to be computed separately

ZT (g2
0 ) = −

∆f

∆ξk

1

〈T0k 〉~ξ

opening the possibility for a study of the e.o.s. [Giusti and Pepe, 2014]

An implementation to fermionic degrees of freedom is ongoing [Dalla Brida et al., 2017].
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A non-equilibrium method for equilibrium thermodynamics



The Second Law of Thermodynamics

We start from Clausius inequality ∫ B

A

dQ

T
≤ ∆S

that for isothermal transformations becomes
Q

T
≤ ∆S

If we use {
Q = ∆E −W (First Law)

F
def
= E − ST

the Second Law becomes
W ≥ ∆F

where the equality holds for reversible processes.

Moving from thermodynamics to statistical mechanics we know that the former relation (valid for
a macroscopic system) becomes

〈W 〉 ≥ ∆F
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Let’s consider a system with Hamiltonian Hλ parametrized by λ. Its partition function is

Zλ(T ) =

∫
dΓe−βHλ(Γ)

and the free energy is
Fλ(T ) = −β−1 ln Zλ(T )

Now we are interested in letting the system evolve in time by varying the parameter λ between
two values.
The crucial quantity is the work performed on the system

W =

∫ tf

ti

dtλ̇
∂Hλ

∂λ

(this is not arbitrary: Ḣ = λ̇ ∂H
∂λ

+ Γ̇ ∂H
∂Γ

can be identified with the First Law of Thermodynamics)

This is repeated in order to have an ensemble of realizations of this process: for each of them W
is computed separately.
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Jarzynski’s equality

Now we can precisely state the non-equilibrium equality [Jarzynski, 1997]〈
exp

(
−

W (λi , λf )

T

)〉
= exp

(
−

F (λf )− F (λi )

T

)
Jarzynski’s equality relates the exponential statistical average of the work done on a system
during a non-equilibrium process with the difference between the initial and the final free energy
of the system.

At the beginning of each transformation the system must be at equilibrium.

In each step of the process the value of λ is changed and the system is brought out of equilibrium.

Moreover: using Jensen’s inequality

〈exp x〉 ≥ exp〈x〉

(valid for averages on real x) we get

exp

(
−

∆F

T

)
=

〈
exp

(
−

W

T

)〉
≥ exp

(
−
〈W 〉

T

)

from which we get the Second Law, 〈W 〉 ≥ ∆F !
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Jarzynski’s equality in a Monte Carlo simulation

〈
exp

(
−

W (λ0, λN )

T

)〉
= exp

(
−

∆F

T

)
1 the non-equilibrium transformation begins by changing λ with some prescription (e.g. a linear one)

λ0 → λ1 = λ0 + ∆λ

2 we compute the “work”
Hλn+1

[φn]− Hλn [φn]

3 after each change, the system is updated using the new value → driving the system out of equilibrium!

[φn]
λn+1−−−→ [φn+1]

4 the total work W (λ0, λN ) made on the system to change λ using N steps is

W (λ0, λN ) =

N−1∑
n=0

(
Hλn+1

[φn]− Hλn [φn]
)

5 at the end, we create a new initial state φ0 and we repeat this transformation for nr realizations

The 〈...〉 indicates that we have to take the average on all possible realizations of the transformation
→ it must be repeated several times to obtain convergence to the correct answer!
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Pressure with Jarzynski’s relation

Jarzynski’s relation gives us a direct method to compute the pressure: we can change
temperature T by controlling the parameter βg in a non-equilibrium transformation!

The difference of pressure between two temperatures T and T0 is

p(T )

T 4
−

p(T0)

T 4
0

=

(
Nt

Ns

)3

log〈e−WSU(Nc ) 〉

with WSU(Nc ) being the “work” made on the system:

WSU(Nc ) =

N−1∑
n=0

[
SW (β

(n+1)
g , Û)− SW (β

(n)
g , Û)

]
;

here SW is the standard Wilson action and Û is a configuration of SU(Nc ) variables on the links
of the lattice.
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A comparison of results for the SU(3) e.o.s.



Equilibrium thermodynamics in Yang-Mills theories

For YM thermodynamics highly precise determinations are relatively easy and available at high
temperatures

→ precision studies can be performed and compared with other theoretical tools

I low-temperature phase (T < Tc ) → description in terms of a gas of massive, non-interacting hadrons →
HRG model in QCD

even more dramatic for pure Yang-Mills theories - lattice data in the confining region have been compared
in detail with the prediction of a glueball gas with an Hagedorn spectrum [Meyer, 2009; Borsányi et al.,
2012; Caselle et al., 2015, Alba et al., 2016]

I deconfined phase (T < Tc ) → high temperatures are accessible → connection to perturbative regime
(e.g. HTL), approach to Stefan-Boltzmann limit
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SU(3) equation of state: status report

A high-precision determination of the SU(3) Yang-Mills e.o.s. is an excellent benchmark for the
efficiency and the correctness of any new technique

→ it has been determined in the last few years using markedly different methods

I using a variant of the integral method [Borsànyi et al., 2012]

→ primary observable: trace of the energy-momentum tensor, up to 1000Tc

I using a moving frame [L. Giusti and M. Pepe, 2016]

→ primary observable: entropy density, up to 230Tc

I using the gradient flow [Kitazawa et al., 2016]

→ primary observables: components of Tµν

I using Jarzynski’s equality [M. Caselle,A.N.,M. Panero, 2018]

→ primary observable: pressure
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SU(3) pressure
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SU(3) entropy density
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SU(3) pressure - confining phase
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Conclusions

I Several methods are able to determine with high accuracy the equation of state in the SU(3)
pure gauge theory: general agreement in the continuum limit between different calculations
is found...

I ...despite different “primary” observables are calculated and the renormalization is performed
in completely different ways

I still, non-negligible discrepancies persist, especially in the [1.1Tc , 2.5Tc ] range
I possibly the results of a combination of factors:

I uncertainty on Tc and on the scale setting should be assessed(→ horizontal error bars?)
I cutoff effects (especially just aboveTc )
I the way “secondary” observables are calculated (by integration or derivation) has some degree of

arbitrariness
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Thank you for the attention!
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Jarzynski’s equality provides a solid framework to compute directly the pressure on the lattice
with Monte Carlo simulations.

I we can always verify the convergence of the method to the correct result by performing
transformations in reverse and comparing the results

I with these checks we can look for systematic errors → especially useful close to the transition

I suitable choices of N and nr provide high-precision results while keeping the expected
discrepancies under control

I even with a limited amount of configurations it is possible to extract precise results

Why use it?

I very efficient: intuitively we are exploiting the autocorrelation, since the average is not taken
across all configurations, but only on the different realizations

I to get more precise results we can not only increase nr , but also N, i.e. we get closer to a
reversible transformation
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I The equality requires no particular assumptions and holds under very general conditions: in
our case (Markov chains) the detailed balance condition is sufficient

I in a Monte Carlo simulation we can control
I N, the number of steps for each transformation between initial and final value of the parameter λ

I nr , the number of “trials”, i.e. realizations of the non-equilibrium transformation

I in general, a systematic discrepancy appears between ’direct’ (λi → λf ) and ’reverse’
(λf → λi ) transformations when nr is finite. In practice, one has to choose a suitable
combination of N and nr in order to obtain convergence.

I formally extended to non-isothermal transformations in [Chatelain, 2007] (the temperature
takes the role of λ)〈

exp

(
−

N−1∑
n=0

{
Hλn+1

[φn]

Tn+1
−

Hλn [φn]

Tn

})〉
=

Z(λN ,TN )

Z(λ0,T0)
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Dominant realizations

Picture taken from [Jarzynski, 2006)]

The work is statistically distributed on ρ(W ); however the trials that dominate the exponential
average are in the region where g(W ) = ρ(W )e−βW has the peak.
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Crooks fluctuation theorem

Crooks discovered in 1998 another relation deeply connected with Jarzynski’s equality

PF (W )

PR (−W )
= eβ(W−∆F )

The PF ,R indicate the probability distribution of the work performed in the forward and reverse
realizations of the transformation.

Wd = W −∆F is the dissipated work.
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Pressure renormalization

The pressure is normalized to the value of p(T ) at T = 0 in order to remove the contribution of
the vacuum. Using the ’integral method’ the pressure can be rewritten (relative to its T = 0
vacuum contribution) as

p(T )

T 4
= −Nt

4
∫ β

0
dβ′ [3(Pσ + Pτ )− 6P0]

where Pσ and Pτ are the expectation values of spacelike and timelike plaquettes respectively and
P0 is the expectation value at zero T .

Using Jarzynski’s relation one has to perform another transformation βi → βf but on a symmetric
lattice, i.e. with lattice size Ñ4

s instead of Nt × N3
s . The finite temperature result is then

normalized by removing the T = 0 contribution calculated this way.

p(T )

T 4
=

p(T0)

T 4
0

+

(
Nt

Ns

)3

ln

〈
exp

[
−WSU(Nc )(β

(0)
g , βg )Nt×N3

s

]〉
〈

exp
[
−WSU(Nc )(β

(0)
g , βg )

Ñ4

]〉γ
with γ =

(
N3

s × N0

)
/Ñ4.
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SU(3) pressure across the deconfinement transition, for different values of Nt , with Jarzynski’s equality
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Some potential applications beyond the e.o.s.

I In principle there are no obstructions to the derivation of numerical methods based on
Jarzynski’s relation for fermionic algorithms, opening the possibility for many potential
applications in full QCD

I the free energy density in QCD with a background magnetic field B, to measure the
magnetic susceptibility of the strongly-interacting matter.

I the entanglement entropy in SU(Nc ) gauge theories

I studies involving the Schrödinger functional: Jarzynski’s relation could be used to compute
changes in the transition amplitude induced by a change in the parameters that specify the
initial and final states on the boundaries.
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