

Force

 m_2, q_2

Force

$$F = -G\frac{m_1 m_2}{r^2}$$

$$F = -\frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$$

Newton
Action-at-a-distance

Stress = Force per Unit Area

Stress = Force per Unit Area

Pressure

$$\vec{P} = P\vec{n}$$

Stress = Force per Unit Area

Pressure

$$\vec{P} = P\vec{n}$$

In thermal medium

$$T_{ij} = P\delta_{ij}$$

Generally, F and n are not parallel

$$\frac{F_i}{S} = \sigma_{ij} n_j$$

Stress Tensor

$$\sigma_{ij} = -T_{ij}$$

Landau Lifshitz

Maxwell Stress

(in Maxwell Theory)

$$\sigma_{ij} = \varepsilon_0 E_i E_j + \frac{1}{\mu_0} B_i B_j - \frac{1}{2} \delta_{ij} \left(\varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right)$$

$$\vec{E} = (E, 0, 0)$$

$$T_{ij} = \left(egin{array}{cccc} -E^2 & 0 & 0 \ 0 & E^2 & 0 \ 0 & 0 & E^2 \end{array}
ight)$$

Maxwell Stress

(in Maxwell Theory)

$$T_{ij}v_j^{(k)} = \lambda_k v_i^{(k)}$$
$$(k = 1, 2, 3)$$

length: $\sqrt{|\lambda_k|}$

- Distortion of field, line of the force
- Propagation of the force as local interaction
- ☐ Absolute value of the force between sources

Maxwell Stress

(in Maxwell Theory)

$$T_{ij}v_j^{(k)} = \lambda_k v_i^{(k)}$$
$$(k = 1, 2, 3)$$

length: $\sqrt{|\lambda_k|}$

- Distortion of field, line of the force
- Propagation of the force as local interaction
- Absolute value of the force between sources

Quark—Anti-quark system

Formation of the flux tube → confinement

Quark—Anti-quark system

Formation of the flux tube \rightarrow confinement

Previous Studies on Flux Tube

- Potential
- ☐ Action density
- ☐ Color-electric field

so many studies...

Cea+ (2012)

Cardoso+ (2013)

Spatial Distribution of Stress Tensor

in the QQ System

Lattice simulation SU(3) Yang-Mills a=0.029 fm R=0.69 fm t/a²=2.0

$$T_{ij}v_j^{(k)} = \lambda_k v_i^{(k)}$$
 $(k = 1, 2, 3)$

length: $\sqrt{|\lambda_k|}$

- Clearly gauge invariant
- Distortion of field, line of the force
- Propagation of the force as local interaction
- Absolute value of the force between sources

Comparison: SU(3) YM vs Maxwell

SU(3) Yang-Mills

 $z \, [\mathrm{fm}]$

Maxwell (classical)

Propagation of the force is clearly different in YM and Maxwell theories!

Energy-Momentum Tensor on the Lattice and Gradient Flow

$$T_{00} = \begin{bmatrix} T_{01} & T_{02} & T_{03} \\ T_{10} & T_{11} & T_{22} & T_{13} \\ T_{20} & T_{21} & T_{22} & T_{23} \\ T_{30} & T_{31} & T_{32} & T_{33} \end{bmatrix}$$

: nontrivial observable on the lattice

Definition of the operator is nontrivial because of the explicit breaking of Lorentz symmetry

ex:
$$T_{\mu\nu} = F_{\mu\rho}F_{\nu\rho} - \frac{1}{4}\delta_{\mu\nu}FF$$

2 Its measurement is extremely noisy due to high dimensionality and etc.

(Yang-Mills) Gradient Flow

$$\frac{\partial}{\partial t} A_{\mu}(t, x) = -\frac{\partial S_{\text{YM}}}{\partial A_{\mu}}$$

Luscher 2010 Narayanan, Neuberger, 2006 Luscher, Weiss, 2011

$$A_{\mu}(0,x) = A_{\mu}(x)$$

t: "flow time" dim:[length²]

$$\partial_t A_{\mu} = D_{\nu} G_{\mu\nu} = \partial_{\nu} \partial_{\nu} A_{\mu} + \cdots$$

- diffusion equation in 4-dim space
- diffusion distance $d \sim \sqrt{8t}$
- "continuous" cooling/smearing

Small Flow-Time Expansion

Luescher, Weisz, 2011 Suzuki, 2013

$$\tilde{\mathcal{O}}(t,x) \xrightarrow[t \to 0]{} \sum_{i} c_i(t) \mathcal{O}_i^R(x)$$

an operator at t>o

remormalized operators of original theory

Constructing EMT 1

$$\widetilde{\mathcal{O}}(t,x) \xrightarrow[t \to 0]{} \sum_{i} c_i(t) \mathcal{O}_i^R(x)$$

☐ gauge-invariant dimension 4 operators

$$\begin{cases} U_{\mu\nu}(t,x) = G_{\mu\rho}(t,x)G_{\nu\rho}(t,x) - \frac{1}{4}\delta_{\mu\nu}G_{\mu\nu}(t,x)G_{\mu\nu}(t,x) \\ E(t,x) = \frac{1}{4}\delta_{\mu\nu}G_{\mu\nu}(t,x)G_{\mu\nu}(t,x) \end{cases}$$

$$U_{\mu\nu}(t,x) = \alpha_U(t) \left[T_{\mu\nu}^R(x) - \frac{1}{4} \delta_{\mu\nu} T_{\rho\rho}^R(x) \right] + \mathcal{O}(t)$$

$$E(t,x) = \langle E(t,x) \rangle + \alpha_E(t) T_{\rho\rho}^R(x) + \mathcal{O}(t)$$

Suzuki coeffs.
$$\left\{ \begin{array}{l} \alpha_U(t) = g^2 \left[1 + 2b_0 s_1 g^2 + O(g^4) \right] \\ \alpha_E(t) = \frac{1}{2b_0} \left[1 + 2b_0 s_2 g^2 + O(g^4) \right] \end{array} \right.$$

$$g = g(1/\sqrt{8t})$$

 $s_1 = 0.03296...$
 $s_2 = 0.19783...$

Remormalized EMT

$$T_{\mu\nu}^{R}(x) = \lim_{t \to 0} \left[\frac{1}{\alpha_U(t)} U_{\mu\nu}(t, x) + \frac{\delta_{\mu\nu}}{4\alpha_E(t)} E(t, x)_{\text{subt.}} \right]$$

Application to Thermodynamics

FlowQCD, PR**D94**, 114512 (2016)

Conventional
Integral Method

Thermodynamic relations

$$\frac{\partial \ln Z}{\partial a} = \frac{\partial \beta}{\partial a} \frac{\partial \ln Z}{\partial \beta} \sim \frac{\partial \beta}{\partial a} \langle S \rangle$$
$$T \frac{\partial (p/T^4)}{\partial T} = \frac{\varepsilon - 3p}{T^4}$$

Our Approach

Gradient Flow Method

Take expectation values

$$\begin{cases} \varepsilon = \langle T_{00} \rangle \\ p = \langle T_{11} \rangle \end{cases}$$

Other progress: shifted boundary Giusti and Pepe (2014~) Jarzynski's equality Caselle+ (2018); Talk by Nada, Monday

Numerical Simulation

- \blacksquare Expectation values of $T_{\mu\nu}$
- SU(3) YM theory
- Wilson gauge action
- Parameters:
 - $N_t = 12, 16, 20-24$
 - aspect ratio 5.3<N_s/N_t<8
 - 1500~2000 configurations
- Scale from gradient flow

 $\rightarrow aT_c$ and $a\Lambda_{\rm MS}$

FlowQCD 1503.06516

FlowQCD, PR**D94**, 114512 (2016)

T/T_c	β	N_s	$N_{ au}$	Configurations
0.93	6.287	64	12	2125
	6.495	96	16	1645
	6.800	128	24	2040
1.02	6.349	64	12	2000
	6.559	96	16	1600
	6.800	128	22	2290
1.12	6.418	64	12	1875
	6.631	96	16	1580
	6.800	128	20	2000
1.40	6.582	64	12	2080
	6.800	128	16	900
	7.117	128	24	2000
1.68	6.719	64	12	2000
	6.941	96	16	1680
	7.117	128	20	2000
2.10	6.891	64	12	2250
	7.117	128	16	840
	7.296	128	20	2040
2.31	7.200	96	16	1490
	7.376	128	20	2020
	7.519	128	24	1970
2.69	7.086	64	12	2000
	7.317	96	16	1560
	7.500	128	20	2040

t, a Dependence

---- Budapest-Wuppertal
---- Bielefeld $\beta = 6.719, 64^3 \times 12$ $\beta = 6.941, 96^3 \times 16$ $\beta = 7.117, 128^3 \times 20$

$$\int \sqrt{8t} < a \; :$$
 strong discretization effect $\sqrt{8t} > 1/(2T) :$ over smeared

 $a < \sqrt{8t} < 1/(2T)$: Linear t dependence

Double Extrapolation

 $t \rightarrow 0, a \rightarrow 0$

$$\langle T_{\mu\nu}(t)\rangle_{\text{latt}} = \langle T_{\mu\nu}(t)\rangle_{\text{cont}} + C_{\mu\nu}t + D_{\mu\nu}(t)\frac{a^2}{t}$$

Continuum extrapolation

$$\langle T_{\mu\nu}(t)\rangle_{\rm cont} = \langle T_{\mu\nu}(t)\rangle_{\rm lat} + C(t)a^2$$

Small t extrapolation

$$\langle T_{\mu\nu}\rangle = \langle T_{\mu\nu}(t)\rangle + C't$$

Double Extrapolation

Black line: continuum extrapolated

Double Extrapolation

Black line: continuum extrapolated

☐ Fitting ranges:

 \square range-1: $0.01 < tT^2 < 0.015$

 \square range-2: $0.005 < tT^2 < 0.015$

 \square range-3: $0.01 < tT^2 < 0.02$

Systematic error from the choice of fitting range

≈ statistical error

Temperature Dependence

Error includes

- > statistical error
- ➤ choice of t range for t→o limit
- ightharpoonup uncertainty in a $\Lambda_{
 m MS}$

total error <1.5% for $T>1.1T_c$

- Excellent agreement with integral method
- ☐ High accuracy only with ~2000 confs.

See also, talk by Nada, Monday

Full QCD Result

Taniguchi+ (WHOT-QCD), PR**D96**, 014509 (2017)

- \square Agreement with integral method except for N_t=4, 6
- \square No stable extrapolation for N_t=4, 6
- Suppression of statistical error

EMT Euclidean Correlator

FlowQCD, PR **D96**, 111502 (2017)

$$\langle \bar{T}_{44}(\tau)\bar{T}_{44}(0)\rangle$$

$$\langle \bar{T}_{44}(\tau)\bar{T}_{44}(0)\rangle \qquad \langle \bar{T}_{44}(\tau)\bar{T}_{11}(0)\rangle$$

$$\langle \bar{T}_{41}(\tau)\bar{T}_{41}(0)\rangle$$

- \square τ -independent plateau in all channels \rightarrow conservation law
- Confirmation of linear-response relations
- New analysis of specific heat

$$\frac{s}{T^3} = \frac{\langle \bar{T}_{44}(\tau)\bar{T}_{11}(0)\rangle}{VT^5} = \frac{\langle \bar{T}_{41}(\tau)\bar{T}_{41}(0)\rangle}{VT^5} \qquad c_V = \frac{\langle \bar{T}_{00}^2\rangle}{VT^2}$$

Analysis of Stress Tensor in QQ System

Preparing Static QQ

$$V(R) = -\lim_{T \to \infty} \log \langle W(R, T) \rangle$$

$$\langle O(x) \rangle_{Q\bar{Q}} = \lim_{T \to \infty} \frac{\langle \delta O(x) \delta W(R, T) \rangle}{\langle W(R, T) \rangle}$$

- APE smearing for spatial links
- Multi-hit for temporal links
- No gradient flow for W(R,T)

Lattice Setup

- SU(3) Yang-Mills (Quenched)
- Wilson gauge action
- ☐ Clover operator
- ☐ APE smearing / multi-hit
- fine lattices (a=0.029-0.06 fm)
- continuum extrapolation
- Simulation: bluegene/Q@KEK

β	a [fm]	$N_{ m size}^4$	$N_{\rm conf}$		R/a	
	0.058		140	8	12	16
	0.046		440	10	_	20
	0.043		600	_	16	_
6.600	0.038	48^{4}	1,500	12	18	24
6.819	0.029	64^{4}	1,000	16	24	32
		R	R [fm]		0.69	0.92

Ground State Saturation

 β =6.819 (a=0.029 fm), R=0.46 fm

Appearance of plateau for t/a²<4, T/a>15

Grand state saturation under control

Ground State Saturation

 β =6.819 (a=0.029 fm), R=0.46 fm

Appearance of plateau for t/a²<4, T/a>15

Grand state saturation under control

Continuum Extrapolation

 \square a \rightarrow 0 extrapolation with fixed t

t→0 Extrapolation

- \square a \rightarrow 0 extrapolation with fixed t
- □ Then, t→0 with three ranges

Symmetry on Mid-Plane

From rotational symm. & parity

EMT is diagonalized in Cylindrical Coordinates

$$T_{cc'}(r) = \left(egin{array}{c} T_{rr} & & & \ & T_{ heta heta} & & \ & & T_{zz} & \ & & & T_{44} \end{array}
ight)$$

$$T_{\theta\theta} = \vec{e}_{\theta}^T T \vec{e}_{\theta}$$

Degeneracy in Maxwell theory

$$T_{rr} = T_{\theta\theta} = -T_{zz} = -T_{44}$$

Mid-Plane

$$egin{array}{ll} lackbreak & - ig\langle \mathcal{T}_{44}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & igvedows & - ig\langle \mathcal{T}_{zz}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ig\langle \mathcal{T}_{rr}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ig\langle \mathcal{T}_{ heta heta}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ig\langle \mathcal{T}_{ heta heta}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ig\langle \mathcal{T}_{ heta heta}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ig\langle \mathcal{T}_{ heta heta}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ig\langle \mathcal{T}_{ heta heta}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ig\langle \mathcal{T}_{ heta heta}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ig\langle \mathcal{T}_{ heta heta}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ig\langle \mathcal{T}_{ heta heta}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ig\langle \mathcal{T}_{ heta heta}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ig\langle \mathcal{T}_{ heta heta}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ig\langle \mathcal{T}_{ heta heta}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ig\langle \mathcal{T}_{ heta heta}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ig\langle \mathcal{T}_{ heta heta}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ig\langle \mathcal{T}_{ heta heta}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ig\langle \mathcal{T}_{ heta heta}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ig\langle \mathcal{T}_{ heta heta}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ig\langle \mathcal{T}_{ heta heta}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ig\langle \mathcal{T}_{ heta heta}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ig\langle \mathcal{T}_{ heta heta}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ig\langle \mathcal{T}_{ heta heta}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ig\langle \mathcal{T}_{ heta heta}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ar{\mathcal{T}_{ heta}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ar{\mathcal{T}_{ heta}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ar{\mathcal{T}_{ heta}^{
m R}(r) ig
angle_{Qar Q} \, [{
m GeV/fm^3}] \ & ar{\mathcal{T}_{ heta}^{
m$$

Continuum Extrapolated!

- lacksquare Degeneracy: $T_{44} \simeq T_{zz}, \quad T_{rr} \simeq T_{ heta heta}$
- $lue{}$ Separation: $T_{zz}
 eq T_{rr}$
- lacksquare Nonzero trace anomaly $T_{cc} \neq 0$

$$\sum T_{cc} \neq 0$$

Mid-Plane

- $-\langle \mathcal{T}_{44}^{\mathrm{R}}(r) \rangle_{Q\bar{Q}} \left[\mathrm{GeV/fm^3} \right]$ $-\langle \mathcal{T}_{zz}^{
 m R}(r)
 angle_{Qar Q} \, [{
 m GeV/fm^3}]$
- $\langle \mathcal{T}^{
 m R}_{rr}(r)
 angle_{Qar Q}\,[{
 m GeV/fm^3}]$
- $ig\langle \mathcal{T}^{
 m R}_{ heta heta}(r) ig
 angle_{Qar Q} \, [{
 m GeV/fm^3}]$

- lacksquare Degeneracy: $T_{44} \simeq T_{zz}, \quad T_{rr} \simeq T_{ heta heta}$
- $lue{}$ Separation: $T_{zz} \neq T_{rr}$
- lacksquare Nonzero trace anomaly $T_{cc} \neq 0$

$$\sum T_{cc} \neq 0$$

Force

Force from Potential

$$F_{\rm pot} = -\frac{dV}{dR}$$

Force from Stress

$$F_{\text{stress}} = \int_{\text{mid.}} d^2x T_{zz}(x)$$

Force

Force from Potential

$$F_{\rm pot} = -\frac{dV}{dR}$$

Force from Stress

$$F_{\text{stress}} = \int_{\text{mid.}} d^2x T_{zz}(x)$$

Force

Force from Potential

$$F_{\rm pot} = -\frac{dV}{dR}$$

Force from Stress

$$F_{\text{stress}} = \int_{\text{mid.}} d^2x T_{zz}(x)$$

Stress Tensor Distribution in Dual Abelian-Higgs Model

Yanagihara+, in prep.

Abelian-Higgs Model

Abelian-Higgs Model

$$\mathcal{L}_{AH} = -\frac{1}{4}F_{\mu\nu}^2 + |(\partial_{\mu} + igA_{\mu})\phi|^2 - \lambda(\phi^2 - v^2)^2$$

- flux-tube solution w/ monopoles Nielsen, Olesen (1973)
- model for QCD vacuum (dual-Ginzburg-Landau)
- describe symmetry breaking/restoration
- nonzero trace anomaly

Abelian-Higgs Model

Abelian-Higgs Model

$$\mathcal{L}_{AH} = -\frac{1}{4}F_{\mu\nu}^2 + |(\partial_{\mu} + igA_{\mu})\phi|^2 - \lambda(\phi^2 - v^2)^2$$

GL parameter: $\kappa = \sqrt{\lambda/g}$

- $\begin{cases} \Box \text{ type-I}: & \kappa < 1/\sqrt{2} \\ \Box \text{ type-II}: & \kappa > 1/\sqrt{2} \end{cases}$ $\Box \text{ Bogomol'nyi bound}:$

$$\kappa = 1/\sqrt{2}$$

Infinitely long tube

degeneracy

$$T_{zz}(r)=T_{44}(r)\,$$
 Luscher, 1981

conservation law

$$\frac{d}{dr}\left(rT_{rr}\right) = T_{\theta\theta}$$

Stress Tensor in AH Model

Bogomol'nyi bound : $\kappa = 1/\sqrt{2}$

$$T_{rr} = T_{\theta\theta} = 0$$

de Vega, Schaposnik, PR**D14**, 1100 (1976).

Stress Tensor in AH Model

$$\kappa = 0.1$$

Gauge dominant

 $\kappa = 3.0$ Type-II

Higgs dominant

 \blacksquare No degeneracy bw $T_{rr} \& T_{\theta\theta}$

conservation law

$$\frac{d}{dr}\left(rT_{rr}\right) = T_{\theta\theta}$$

Comparison

Abelian-Higgs

Type-I; infinitely long

- \square $T_{rr} > 0$
 - → Suggest type-I (if dual-SC picture is correct)?
- \square $T_{rr} \simeq T_{\theta\theta}$
 - Translationally-invariant flux tube is not formed.

Summary

- First non-perturbative analysis of the stress tensor distribution in quark-anti-quark systems
- New insights into the nature of the flux tube
- "Action-at-a-distance" force is given by the sum of local interaction.
- Non-trivial degeneracy in mid-plane
- \Box T_{rr}>0 \rightarrow type-I vacuum? / T_{rr}~T_{\theta\theta} \rightarrow Is R still small?

Summary

- First non-perturbative analysis of the stress tensor distribution in quark-anti-quark systems
- New insights into the nature of the flux tube
- "Action-at-a-distance" force is given by the sum of local interaction
- Non-trivial degeneracy in mid-plane
- \Box T_{rr}>0 \rightarrow type-I vacuum? / T_{rr}~T_{\theta\theta} \rightarrow Is R still small?
- ☐ So many future studies
 - □ Nonzero temperature / excited states
 - EMT distribution inside hadrons
 - ☐ Model study of the flux tube with finite length