Color Confinement and Strangeness Production

Helmut Satz

Universität Bielefeld, Germany

Joint work with P. Castorina and S. Plumari

EMMI Workshop: Constraining the QCD Phase Boundary GSI, Feb 12 - 14, 2018

QCD Phase Boundary and Heavy Ion Collisions:

"normal" hadrons are on this side of boundary

possible tool to check boundary: effect of QGP formation on strange hadron production in high energy collisions?

Müller, Rafelski 1982

QCD Phase Boundary and Heavy Ion Collisions:

"normal" hadrons are on this side of boundary

possible tool to check boundary: effect of QGP formation on strange hadron production in high energy collisions?

Müller, Rafelski 1982

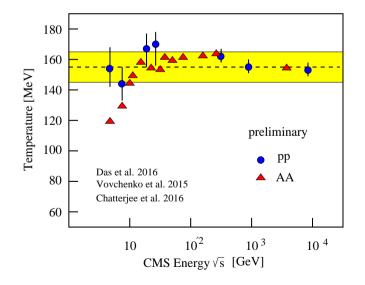
Relative Hadron Abundences in High Energy Collisions

Ideal gas of hadrons and resonances,

at temperature T, baryochemical potential μ .

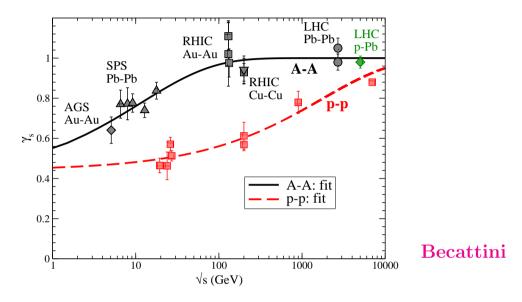
In elementary collisions (pp, e^+e^-) up to RHIC energy and in nuclear collisions up to SPS energies:

overprediction of strange hadron production.

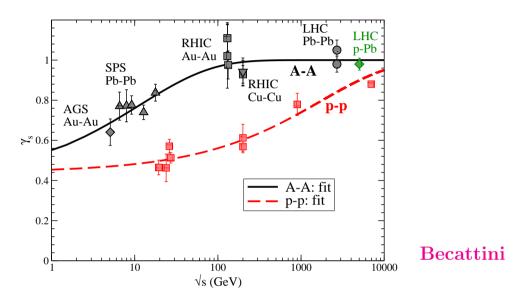

strangeness suppression factor γ_s , with γ_s^{ν} for hadrons with $\nu=0,1,2,3$ strange quarks

Letessier, Rafelski, Tounsi 1994

Ideal gas of hadrons and resonances, at temperature T, baryochemical potential μ , strangeness suppression γ_s , gives excellent agreement for abundances at all energies, all collision configurations (e^+e^-, pp, pA, AA)


Ideal gas of hadrons and resonances, at temperature T, baryochemical potential μ , strangeness suppression γ_s , gives excellent agreement for abundances at all energies, all collision configurations (e^+e^-, pp, pA, AA)

For $\sqrt{s} \geq 10$ GeV, $T \simeq 160 \pm 10$ MeV, for pp and AA, independent of μ , in accord with the color deconfinement temperature $T_c = 155 \pm 10$ MeV from lattice QCD.


For AA below 10 GeV, increasing μ , decreasing T.

Strangeness suppression as function of \sqrt{s} much stronger in pp than in AA:

fit curves for
$$pp$$
: $\gamma_s^p(s) = 1 - c_p \exp{(-d_p s^{1/4})},$ for AA : $\gamma_s^A(s) = 1 - c_A \exp{(-d_A \sqrt{A} \sqrt{s})},$ with $c_p = 0.5595; \ d_p = 0.0242; \ c_A = 0.606, \ d_A = 0.0209.$

Strangeness suppression as function of \sqrt{s} much stronger in pp than in AA:

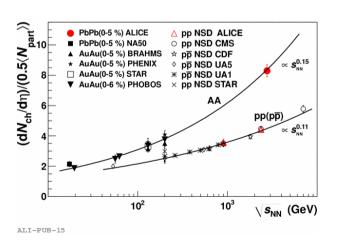
fit curves for
$$pp$$
: $\gamma_s^p(s) = 1 - c_p \exp{(-d_p s^{1/4})},$ for AA : $\gamma_s^A(s) = 1 - c_A \exp{(-d_A \sqrt{A} \sqrt{s})},$ with $c_p = 0.5595; \ d_p = 0.0242; \ c_A = 0.606, \ d_A = 0.0209.$

Is there a unified description of strangeness suppression? Consider γ_s as function of pre-thermal or thermal variable.

Castorina, Plumari, HS 2016/2017

• color glass condensate: parton density in transverse plane

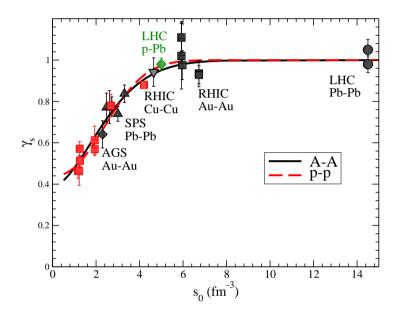
$$D=rac{1}{A}igg(rac{dN_h}{dy}igg)_{\!y=0}$$


• 1d hydro (Bjorken) \Rightarrow initial entropy density s_0

$$s_0 \, au_0 \simeq rac{1.5 A^x}{\pi R_x^2} \Big(\!rac{dN_{ch}}{dy}\!\Big)_{\!y=0}^x \,, \, ext{ with } x \sim pp, pA, AA,$$

multiplicities measured and fitted:

$$\left(rac{dN}{dy}
ight)_{y=0}^{AA}=a_A(\sqrt{s})^{0.3}+b_A$$


$$\left(rac{dN}{dy}
ight)_{y=0}^{pp}=a_p(\sqrt{s})^{0.22}+b_p$$

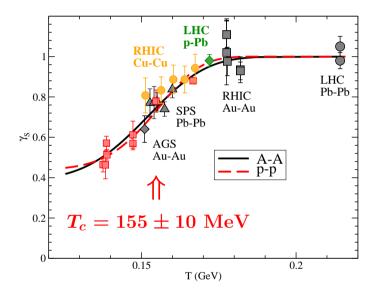
 $a_A = 0.7613, \ b_A = 0.0534; \ a_p = 0.797; \ b_p = 0.04123.$

Now have strangeness suppression factor $\gamma_s(s)$ and initial entropy density $s_0(s)$; eliminate s to get $\gamma_s(s_0)$:

Now have strangeness suppression factor $\gamma_s(s)$ and initial entropy density $s_0(s)$; eliminate s to get $\gamma_s(s_0)$:

as function of the initial entropy density, the pp and AA curves for γ_s coincide, all data fall on the same curve:

universal strangeness suppression


in particular: $\gamma_s \to 1$ also for high energy pp collisions

Castorina, HS 2016

Lattice QCD studies \Rightarrow initial entropy density vs. initial temperature T Bazazov et al. (HotQCD) 2014 obtain strangeness suppression factor $\gamma_s(T)$:

Lattice QCD studies \Rightarrow initial entropy density vs. initial temperature T Bazazov et al. (HotQCD) 2014

obtain strangeness suppression factor $\gamma_s(T)$:

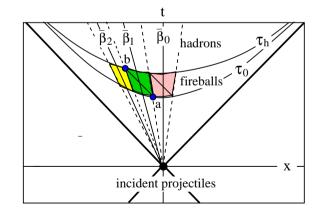
Conclusion:

- Strangeness suppression is a universal function of initial thermal state.
- Strangeness suppression vanishes with the onset of color deconfinement.

 Castorina, Plumari, HS 2017

Remaining theoretical questions:

- Why is there suppression in hadronic regime?
- Why does the suppression vanish with deconfinement?
- How can final state (freeze-out) provide information on initial state (thermalization)?


How can gas remember it was liquid an hour ago?

Local strangeness conservation $V_s < V \Rightarrow$ suppression of strangeness production.

Hamieh, Redlich, Tounsi 2000

Causality structure of production evolution \Rightarrow spatial restriction to strangeness conservation.

Castorina, HS 2013

Memory transmission: canonical \rightarrow grand canonical ensemble?