Fictions, fluctuations and mean fields

Pasi Huovinen
Uniwersytet Wrocławski

Constraining the QCD Phase Boundary with Data from Heavy Ion Collisions
 February 12, 2018, GSI, Darmstadt

in collaboration with Peter Petreczky, arXiv:1708.00879

The speaker has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 665778 via the National Science Center, Poland, under grant Polonez DEC-2015/19/P/ST2/03333

Fiction, noun

> A fictitious particle, i.e. a particle predicted by some model without solid empirical evidence for its existence

Fluctuations of conserved charges

$$
\begin{aligned}
& \chi_{n}^{X}=\left.T^{n} \frac{\partial^{n} P / T^{4}}{\partial \mu_{X}^{n}}\right|_{\mu_{X}=0} \\
& \chi_{n m}^{X Y}=\left.T^{n+m} \frac{\partial^{n+m} P / T^{4}}{\partial \mu_{X}^{n} \partial_{Y}^{m}}\right|_{\mu_{X}=0, \mu_{Y}=0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Bazavov et al., PRD95, } 054504 \text { (2017) }
\end{aligned}
$$

More resonances?

Baryon spectrum

Blue: Particle Data Group

Baryon spectrum

Blue: Particle Data Group
Red: PDG + Löring et al., EPJA10, 395 (2001) \& EPJA10, 447 (2001)

Hadron spectrum

Blue: Particle Data Group
Red: PDG + Löring et al., EPJA10, 395 (2001) \& EPJA10, 447 (2001) Black: PDG + Ebert et al., PRD79, 114029 (2009)

Trace anomaly

Trace anomaly

χ_{B}^{2}

χ_{B}^{2}

$\chi_{B S}^{11}$

$\chi_{B S}^{11}$

χ_{S}^{2}

χ_{S}^{2}

Differences of fluctuations

- These zero in Boltzmann approximation

Virial expansion

$$
P=P^{\mathrm{i} d e a l}+T \sum_{i j} b_{2}^{i j}(T) e^{\beta \mu_{i}} e^{\beta \mu_{j}}
$$

$b_{2}^{i j}$ can be related to the S-matrix of scattering of particles i and j

- $\pi \pi, \pi N$, etc. scatterings dominated by resonance formation
- no resonances in $N N$ scatterings

Virial expansion in nucleon gas

$$
\begin{gathered}
P(T, \mu)=P_{0}(T) \cosh (\beta \mu)+2 b_{2}(T) T \cosh (2 \beta \mu) \\
P_{0}(T)=\frac{4 m^{2} T^{2}}{\pi^{2}} K_{2}(\beta m) \\
b_{2}(T)=\frac{2 T}{\pi^{3}} \int_{0}^{\infty} \mathrm{d} E\left(\frac{m E}{2}+m^{2}\right) K_{2}\left(2 \beta \sqrt{\frac{m E}{2}+m^{2}}\right) \frac{1}{4 i} \operatorname{Tr}\left[S^{\dagger} \frac{\mathrm{d} S}{\mathrm{~d} E}-\frac{\mathrm{d} S^{\dagger}}{\mathrm{d} E} S\right]
\end{gathered}
$$

Virial expansion in nucleon gas

Elastic part of the S-matrix from scattering phase shift:

$$
\frac{1}{4 i} \operatorname{Tr}\left[S^{\dagger} \frac{\mathrm{d} S}{\mathrm{~d} E}-\frac{\mathrm{d} S^{\dagger}}{\mathrm{d} E} S\right] \rightarrow \sum_{s} \sum_{J}(2 J+1)\left(\frac{\mathrm{d} \delta_{s}^{J, I=0}}{\mathrm{~d} E}+3 \frac{\mathrm{~d} \delta_{s}^{J, I=1}}{\mathrm{~d} E}\right)
$$

Workman et al., PRC94, 065203 (2016); Arndt et al., PRC76, 025209 (2007)

Repulsive mean field

Assume: interactions reduce single partice energy by $U=K n_{b}$ where n_{b} is single nucleon density (Olive, NPB190, 483 (1981))

$$
n_{b}=\int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3}} e^{-\beta\left(E_{p}-\mu+U\right)}
$$

Small $\mu \Rightarrow \beta K n_{b} \ll 1$ and

$$
\begin{aligned}
n_{b} & \approx n_{b}^{0}\left(1-\beta K n_{b}^{0}\right) \Rightarrow \\
P(T, \mu) & =T\left(n_{b}+n_{\bar{b}}\right)-\frac{K}{2}\left(\left(n_{b}^{2}\right)^{2}+\left(n_{\bar{b}}^{0}\right)^{2}\right)
\end{aligned}
$$

or

$$
P(T, \mu)=P_{0}(T)\left(\cosh (\beta \mu)-\frac{K m}{\pi^{2}} K_{2}(\beta m) \cosh (2 \beta \mu)\right)
$$

Virial expansion vs. mean field

$$
\begin{aligned}
& \text { Repulsive mean field } \\
& P(T, \mu)=P_{0}(T) \times \\
& \left(\cosh (\beta \mu)-\frac{K m}{\pi^{2}} K_{2}(\beta m) \cosh (2 \beta \mu)\right)
\end{aligned}
$$

Virial expansion

$$
P(T, \mu)=P_{0}(T) \times
$$

$$
\left(\cosh (\beta \mu)-\bar{b}_{2}(T) K_{2}(\beta m) \cosh (2 \beta \mu)\right)
$$

$$
\text { where } \bar{b}_{2}=\frac{2 T b_{2}(T)}{P_{0}(T) K_{2}(\beta m)}
$$

Trace anomaly

Trace anomaly

χ_{B}^{2}

χ_{B}^{2}

$\chi_{B S}^{11}$

$\chi_{B S}^{11}$

Differences of fluctuations

Filled symbols: HISQ
Bazavov et al.,
PRL111, 082301 (2013)
PRD95, 054504 (2017)
Open symbols: stout 4th order
Bellwied et al., PRD92, 114505 (2015)
6h order
D'Elia et al,. PRD95, 094503 (2017)

- These zero in Boltzmann approximation
- Repulsive interactions create similar differences

Summary

- lattice QCD indicates there are more resonances than observed
- inclusion of quark model states improves the fit to some, and weakens the fit to some observables

Summary

- lattice QCD indicates there are more resonances than observed
- inclusion of quark model states improves the fit to some, and weakens the fit to some observables
- repulsive mean field can describe the differences between baryonic fluctuations of different orders

Summary

- lattice QCD indicates there are more resonances than observed
- inclusion of quark model states improves the fit to some, and weakens the fit to some observables
- repulsive mean field can describe the differences between baryonic fluctuations of different orders
- mean field strength can be constrained by phase shifts

Hadron Resonance Gas with mean field

Assume: only members of baryon octet and decuplet repel each other

$$
P(T, \mu)=T n-\frac{K}{2}\left(\left(n_{o d}^{0}\right)^{2}+\left(n_{\overline{o d}}^{0}\right)^{2}\right)
$$

where

$$
n_{o d}(T)=\frac{T}{2 \pi^{2}} \sum_{i} g_{i} m_{i}^{2} K_{2}\left(\beta m_{i}\right)
$$

$i=N, \Sigma, \Xi, \Delta, \Sigma^{*}, \Xi^{*}, \Omega$

Hadron Resonance Gas with mean field

Assume: only members of baryon octet and decuplet repel each other

$$
P(T, \mu)=T n-\frac{K}{2}\left(\left(n_{o d}^{0}\right)^{2}+\left(n_{\overline{o d}}^{0}\right)^{2}\right)
$$

where

$$
n_{o d}(T)=\frac{T}{2 \pi^{2}} \sum_{i} g_{i} m_{i}^{2} K_{2}\left(\beta m_{i}\right)
$$

$i=N, \Sigma, \Xi, \Delta, \Sigma^{*}, \Xi^{*}, \Omega$

$$
\begin{aligned}
\chi_{n}^{B} & =\chi_{n}^{B(0)}-2^{n} \beta^{4} K\left(n_{o d}^{0}\right)^{2} \\
\chi_{n 1}^{B S} & =\chi_{n 1}^{B S(0)}+2^{n+1} \beta^{5} K n_{o d}^{0}\left(P_{B}^{S 1}+2 P_{B}^{S 2}+3 P_{B}^{S 3}\right)
\end{aligned}
$$

