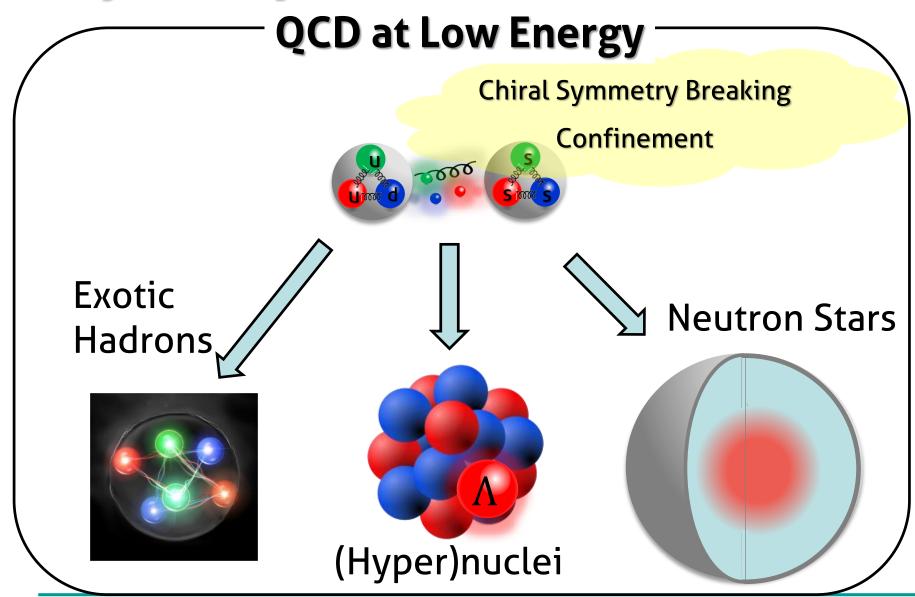
Probing Multistrange Dibaryons with Momentum Correlations in Heavy Ion Collisions

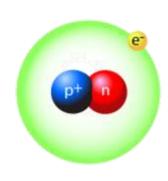
Kenji Morita (University of Wroclaw / iTHES, RIKEN)

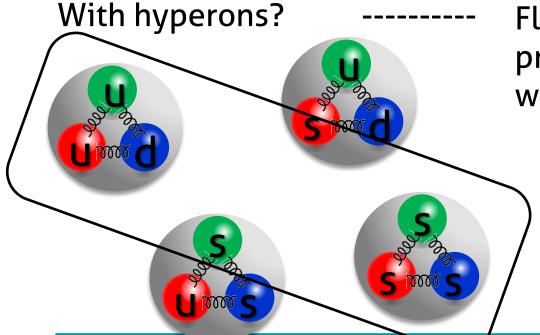
Ref: KM, T.Furumoto, A.Ohnishi, PRC91, 024916 ('15). ΛΛ


KM, A.Ohnishi, F.Etminan, T.Hatsuda, PRC94, 031901(R) ('16). $p\Omega$

A. Ohnishi, KM, K.Miyahara, T.Hyodo, NPA954, 294 ('16). ΛΛ, Kbar N

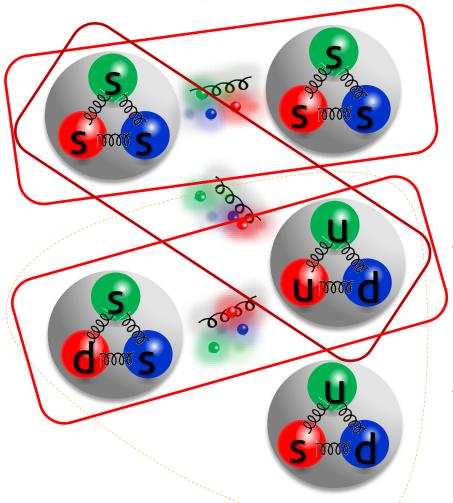
EXHIC Collaboration, Prog. Part. Nucl. Phys.95, 279 ('17). Review


T.Hatsuda, KM, A.Ohnishi, K.Sasaki, NPA967, 856 (17). pE


Baryon-Baryon Interaction

Dibaryons

Deutron (Urey et al., 1931)

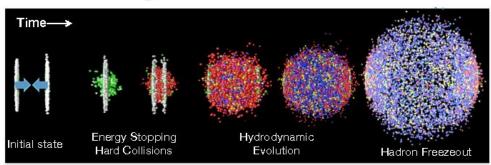


Flavor SU(3) classification predicts some channels with no Pauli blocking

e.g., $N\Omega$ (J=2)

Constraining the QCD Phase Boundary with Data from Heavy Ion Collisions

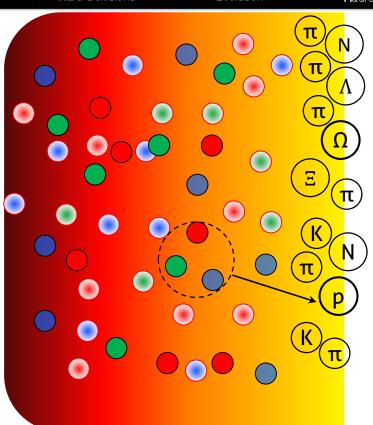
Lattice QCD Studies by HAL QCD Coll.


S=-6:
$$\Omega$$
- Ω (J=0)
28-plet in SU(3)

$$S=-3:N-\Omega (J=2)$$

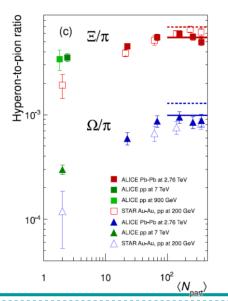
8-plet in SU(3)

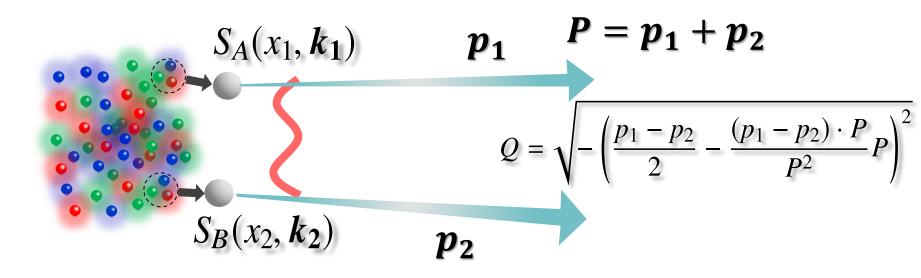
Show strong attraction at almost physical quark masses Experimental Confirmation – Pair Correlation in HIC


Constraining the QCD Phase Boundary with Data from Heavy Ion Collisions

Heavy Ion Collisions as Hyperon Factory

Production of Quark-Gluon Plasma


Crossover Transition Into Hadron Particle Abundance – Thermal Eq.


$$\frac{dN_Y}{dy}\Big|_{y=0} \simeq \begin{cases} 1-26, & \Lambda(S=-1) \\ 0.12-3.3 & \Xi(S=-2) \\ 0.015-0.6 & \Omega(S=-3) \end{cases}$$

Enhanced strangeness production for high-energy / large systems

Particularly unique opportunity for $|S| \ge 2$

Two-Particle Correlation

Measuring Pair Correlation

→ Constrain Pairwise Interaction

$$C_{AB}(Q) = rac{N_{AB}^{
m pair}(Q)}{N_A N_B(Q)} = egin{cases} 1 & ext{No Correlation} \\ ext{others} & ext{Interaction} \\ ext{Interference} \end{cases}$$

Two-Particle Correlation

$$S_A(x_1, \mathbf{k_1})$$
 $\mathbf{p_1}$ $\mathbf{P} = \mathbf{p_1} + \mathbf{p_2}$

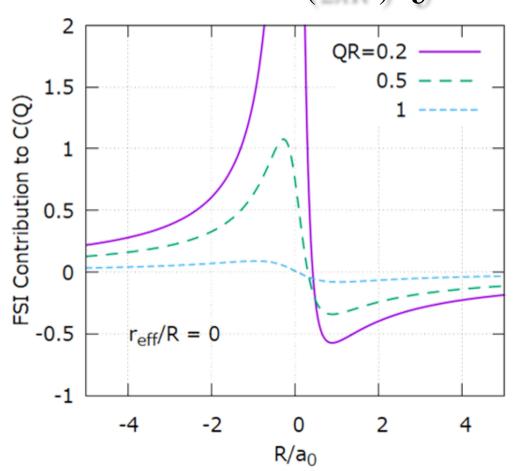
$$Q = \sqrt{-\left(\frac{p_1 - p_2}{2} - \frac{(p_1 - p_2) \cdot P}{P^2} P\right)^2}$$
Small Q

$$N^{\text{pair}}(Q) \simeq \int_{\Delta k} \int_{x_1} \int_{x_2} S_A(x_1, k_1) S_B(x_2, k_2) |\psi_{AB}^{(-)}(r^*, Q^*)|^2$$

(# of pair) = integration of (emission probability x weight factor)

Random emission from the Source Constrained from y, p_t spectrum etc

Scattering wave function FSI and (a)symmetrization (for identical pairs)

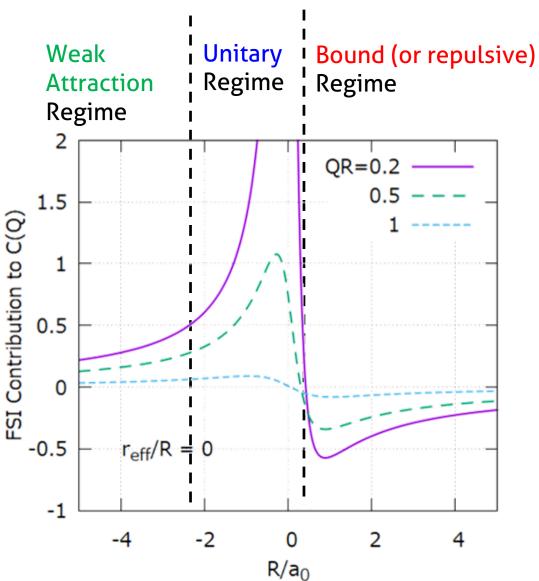

More rigorous formula found in Anchishkin, Heinz, Renk, PRC57 ('98)

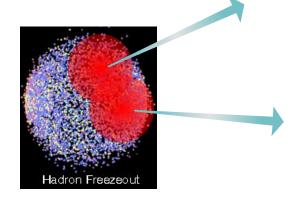
Correlation from FSI

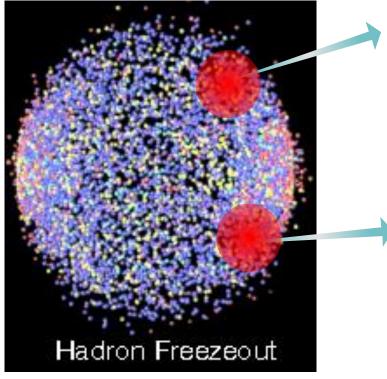
Static/Spherical Source

Lednicky+ '82

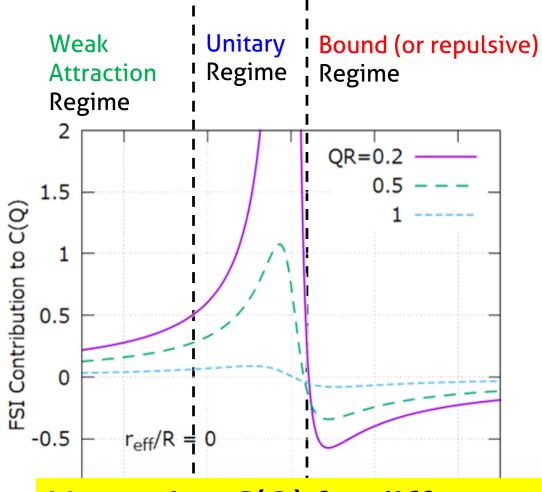
$$C_{AB}(Q) - 1 = \frac{4\pi}{(2\pi R^2)^3} \int dr r^2 S^{\text{rel}}(r) [|\chi_Q(r)|^2 - |j_0(Qr)|^2]$$

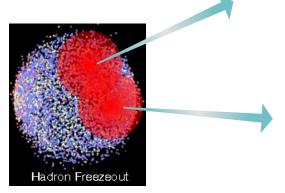

$$S^{\text{rel}}(r) = (\pi R^2)^{3/2} \exp\left(-\frac{r^2}{4R^2}\right)$$

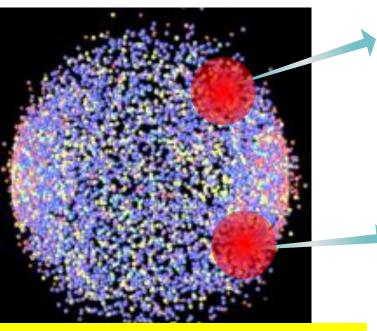

Asymptotic S-wave scattering w.f.

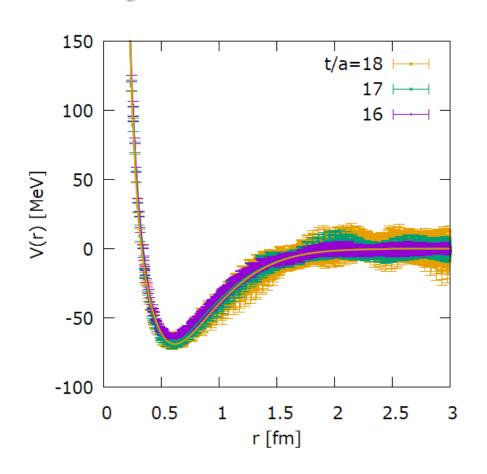

$$\chi_Q(r) = \frac{\sin(Qr + \delta)}{Or}$$

$$Q \cot \delta = -\frac{1}{a_0} + \frac{1}{2} r_{\text{eff}} Q^2$$


Correlation from FSI







Measuring C(Q) for different system size helps to disentangle the FSI-induced correlation from others

The Most Strange System: $\Omega\Omega$ (S=-6)

¹S₀ bound state from Lattice QCD

S.Gongyo et al., (HAL QCD), 1709.00654 m_{π} =146MeV, m_{O} =1713MeV

+Coulomb repulsion

t/a	a _o [fm]	r _{eff} [fm]	E _B [MeV]
16	65.3	1.29	0.1
17	17.6	1.23	0.5
18	11.7	1.21	1.0

Unitary regime in typical source size for HIC

ΩΩ Correlation: elements

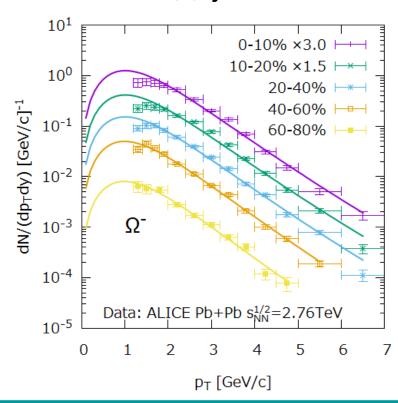
Wave function

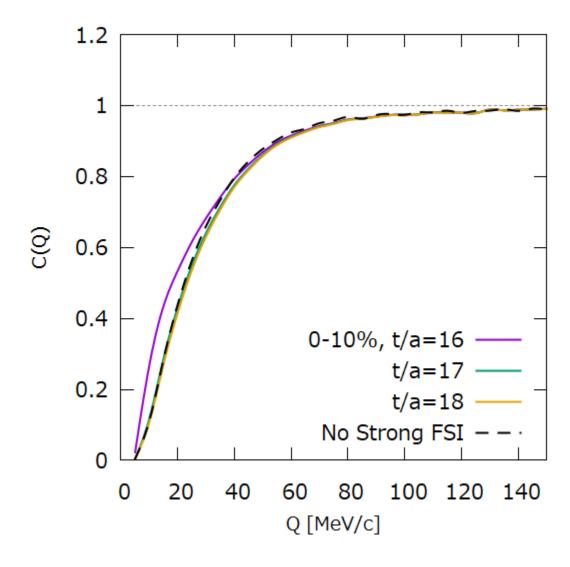
$$|\varphi_{\Omega\Omega}^{\text{spin-averaged}}(\boldsymbol{q}^*, \boldsymbol{r}^*)|^2 = \frac{1}{16}|\varphi(\boldsymbol{J} = 0)|^2 + \sum_{J=1}^3 \frac{2J+1}{16}|\varphi(J)|^2$$

FSI+Coulomb+symmetrization

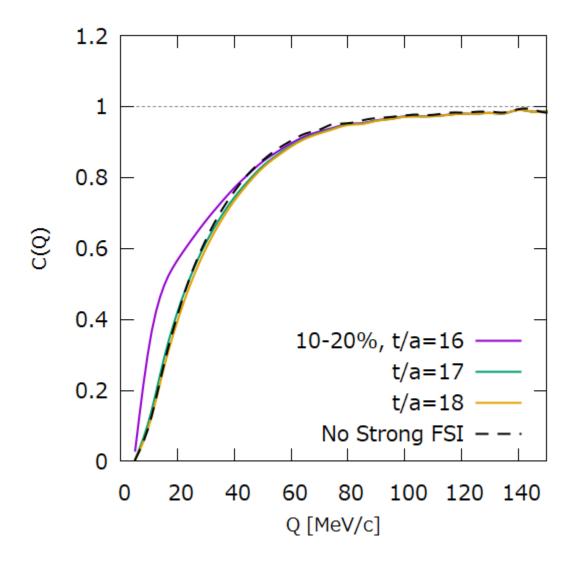
Coulomb+(a)symmetrization

Source function

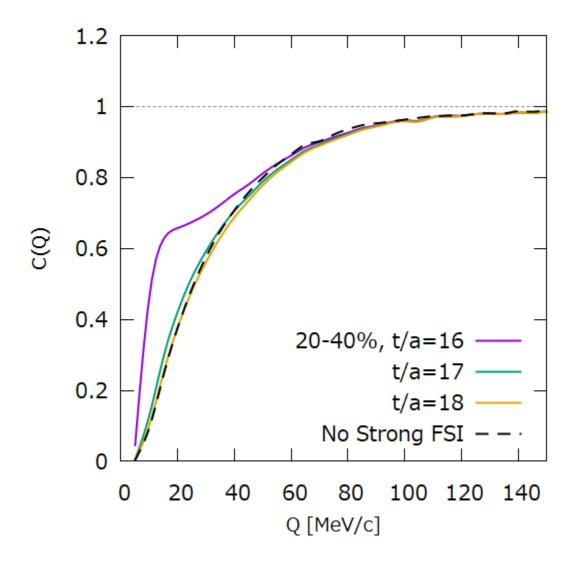

$$S(x, \mathbf{k}) = \frac{d}{(2\pi)^3} m_T \cosh(y - \eta_s) n_f(u \cdot k, T)$$

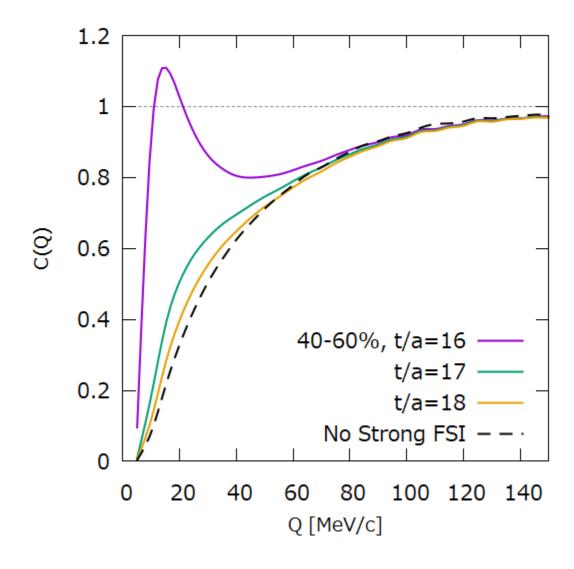

$$\times \exp\left(-\frac{x^2 + y^2}{2R^2}\right) \delta(\tau - \tau_0)$$

$$y_T = \alpha r / R$$

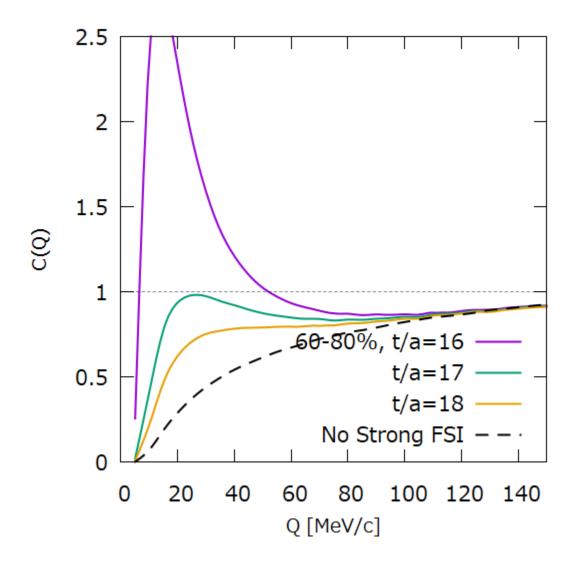

Boost-invariant, azimuthal symmetric transverse flow

Fit to p_T spectrum with T=164 MeV




System is too large Further suppressed by the spin degeneracy factor 1/16

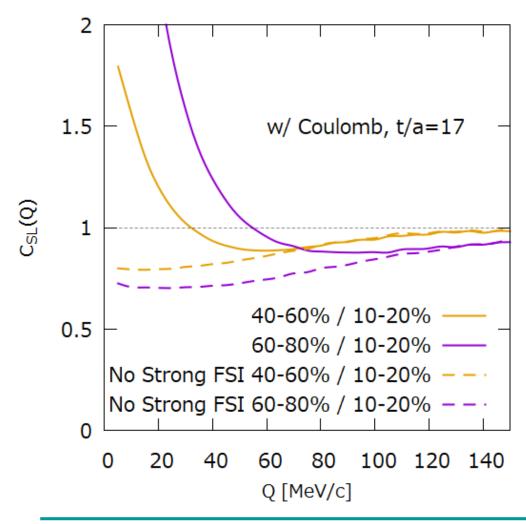
System is too large Further suppressed by the spin degeneracy factor 1/16



System is too large Further suppressed by the spin degeneracy factor 1/16

System is too large Further suppressed by the spin degeneracy factor 1/16

Moderate
enhancement from
Coulomb+HBT case



System is too large Further suppressed by the spin degeneracy factor 1/16

Moderate enhancement from Coulomb+HBT case

Strong enhancement from Coulomb+HBT case

The Small-Large Ratio C_{SL}(Q)

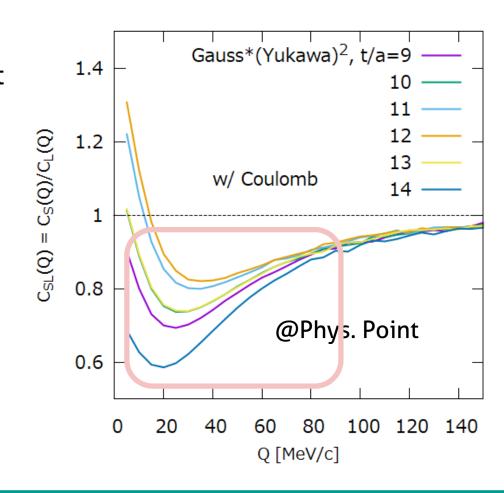
Response to system size change

QS (HBT) Correlation suppresses the ratio

Nevertheless FSI dominates at low Q

Caveat: Statistics (need $N_{\Omega} \geq 2$ events!)

pΩ Correlation

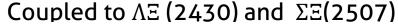

$$|\varphi_{p\Omega}^{\text{spin-averaged}}(\boldsymbol{q}^*, \boldsymbol{r}^*)|^2 = \frac{3}{8}|\varphi(^3S_1)|^2 + \frac{5}{8}|\varphi(^5S_2)|^2$$

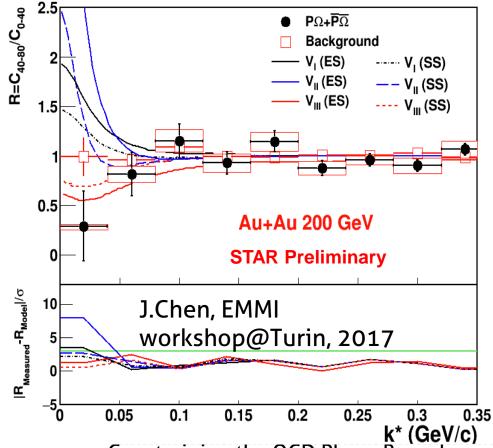
Coupled to $\Lambda \Xi$ (2430) and $\Sigma \Xi$ (2507)

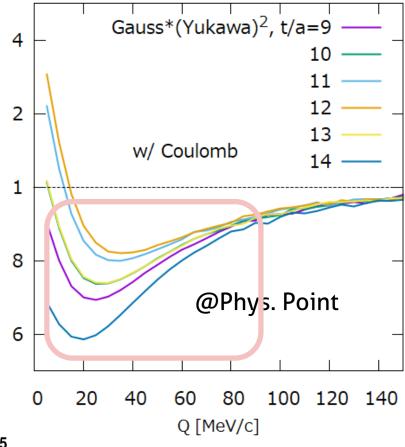
Absorption of S-wave component

$$V_{J=1}(r) = -i\theta(r_0 - r)V_0$$

Bound state regime: Suppression of C_{SL}(Q) Below unity at low Q Lattice input: Iritani+ (Preliminary)



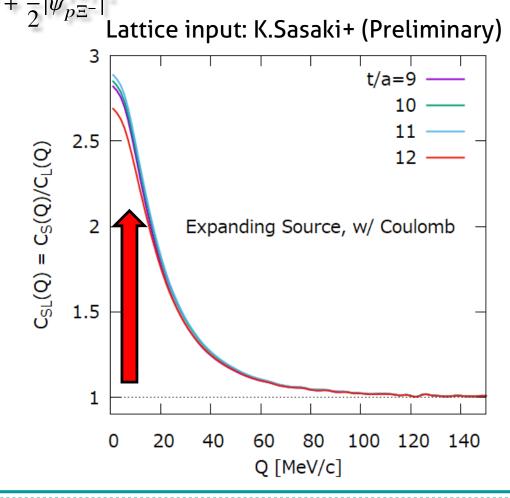

pΩ Correlation


$$|\varphi_{p\Omega}^{\text{spin-averaged}}(\boldsymbol{q}^*, \boldsymbol{r}^*)|^2 = \frac{3}{8}|\varphi(^3S_1)|^2 + \frac{5}{8}|\varphi(^5S_2)|^2$$

1

Lattice input: Iritani+ (Preliminary)

Constraining the QCD Phase Boundary with Data from Heavy Ion Collisions


p_E- Correlation

$$\begin{aligned} |\psi_{p\Xi^{-}}|^{2} &= \frac{1}{2} |\psi_{p\Xi^{-}}^{I=0}|^{2} + \frac{1}{2} |\psi_{p\Xi^{-}}^{I=1}|^{2} \\ &= \frac{1}{8} |\psi_{p\Xi^{-}}^{I=0}(^{1}S_{0})|^{2} + \frac{3}{8} |\psi_{p\Xi^{-}}^{I=0}(^{3}S_{1})|^{2} + \frac{1}{2} |\psi_{p\Xi^{-}}^{I=1}|^{2} \end{aligned}$$

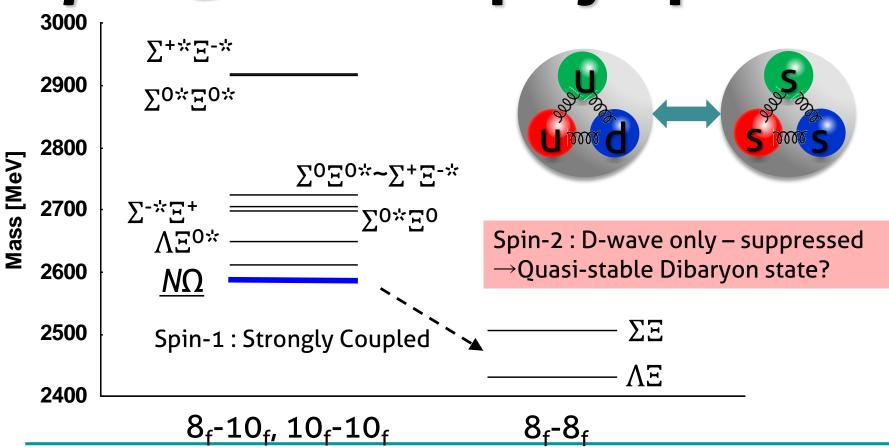
Unitary regime: Notable

enhancement by

FSI

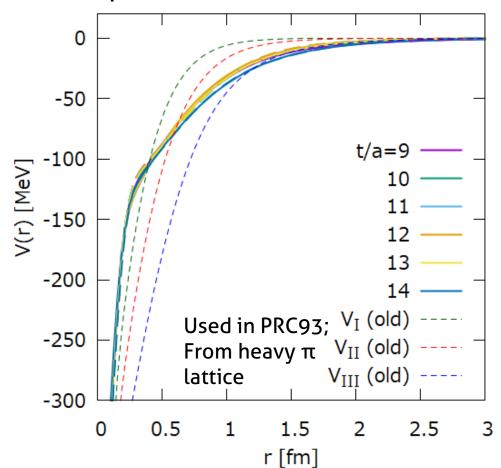
Concluding Remarks

- Correlation measurement in HIC can constrain low energy scattering param.
 - FSI contribution is sensitive to system size:
 Comparing small and large systems via C_{SL}(Q)
- Indirect search for dibaryon states


Loosely bound $\Omega\Omega$ Dibaryon?

Loosely bound NΩ Dibaryon?

Hint from Correlation!


Backup

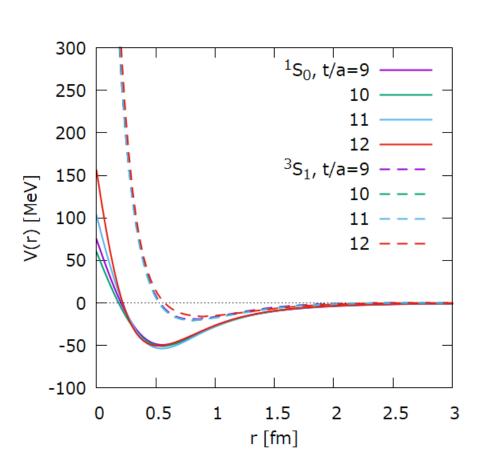
S=-3: $p\Omega$ @almost phys.point

$p\Omega$ Interaction (5S_2)

 $N\Omega$ potential (fitted to Lattice data): bound state exists

+Coulomb attraction

t/a	a _o [fm]	r _{eff} [fm]	E _B [MeV]
11	3.77	1.37	1.6
12	3.89	1.38	1.5
13	3.47	1.37	2.0


Bound state regime for Heavy Ion Collisions

Close to unitary for smaller system

T.Iritani et al. (HAL QCD)

$p\Xi$ Interaction (I=0, ${}^{1}S_{0}$, ${}^{3}S_{1}$)

NE potential (fitted to Lattice data)

+Coulomb attraction

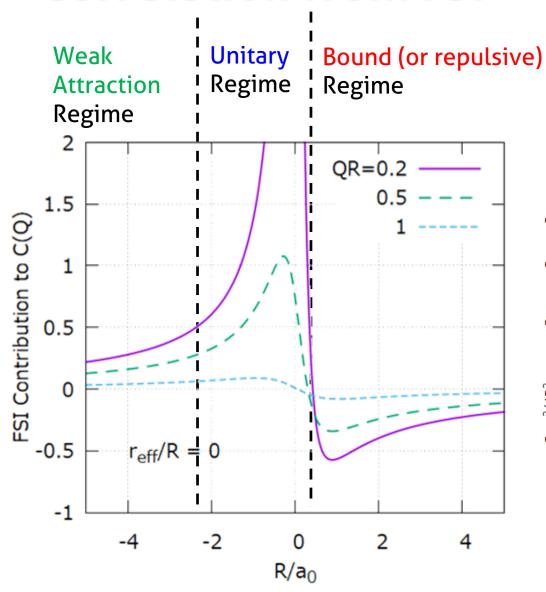
Effective ¹ S ₀		³ S ₁			
a _o [fm]	r _{eff} [fm]	a ₀ [fm]	r _{eff} [fm]		
-22.66	2.46	-0.60	4.53		
-19.86	2.30	-0.73	4.17		
-23.95	2.30	-0.80	4.17		
-12.39	2.40	-0.61	5.30		
	a ₀ [fm] -22.66 -19.86 -23.95	a ₀ [fm] r _{eff} [fm] -22.66 2.46 -19.86 2.30 -23.95 2.30	a ₀ [fm] r _{eff} [fm] a ₀ [fm] -22.66 2.46 -0.60 -19.86 2.30 -0.73 -23.95 2.30 -0.80		

 $^1\text{S}_0$ channel (coupling to $\Sigma\Sigma$ incorpolated) dominates Close to unitary for HIC source

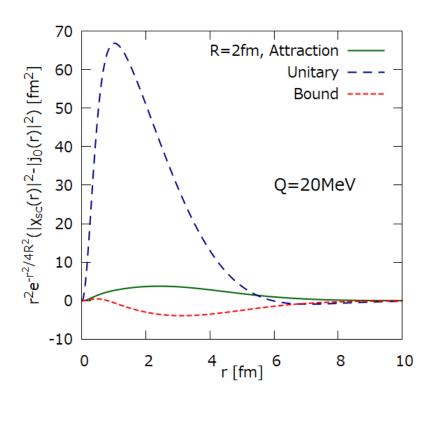
K.Sasaki et al. (HAL QCD)

More on Ω Source Function

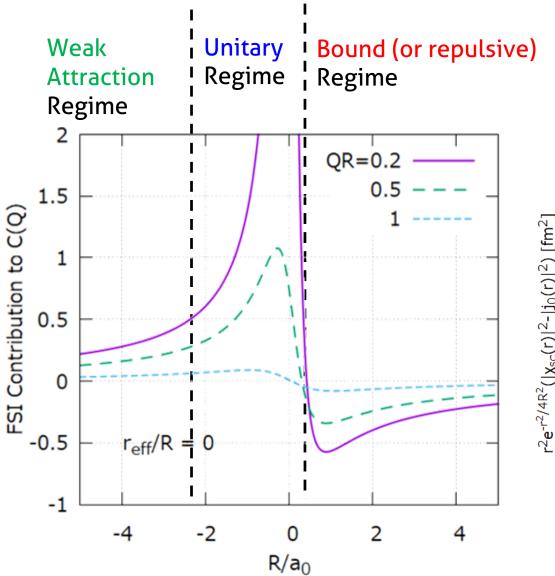
■ Fix τ

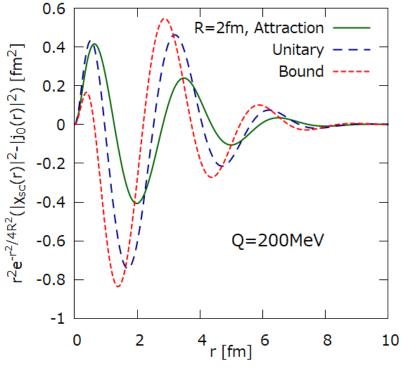

- $\bullet \tau \sim R_{long} \sim < N_{ch} > 1/3$
- Ω freeze-out from phase boundary due to small cross section

Hybrid model: Zhu et al., PRC'15, Takeuchi et al., PRC'15

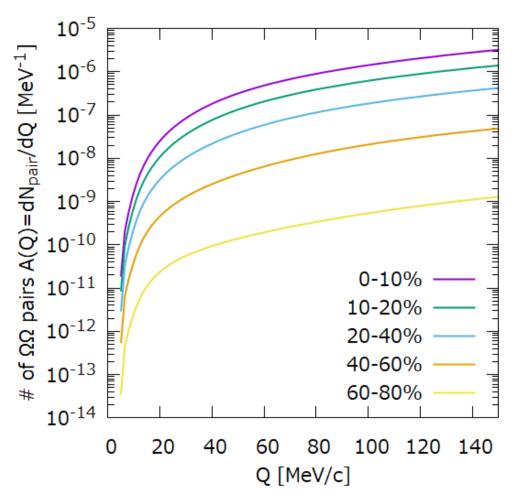

Parameters

Centrality	0-10%	10-20%	20-40%	40-60%	60-80%
τ _ο [fm]	10.0	7.9	6.75	4.89	2.0
R [fm]	5.18	4.74	3.8	2.55	1.6
α	0.38	0.38	0.38	0.38	0.37


Correlation from FSI


Source func × Wave func diff.

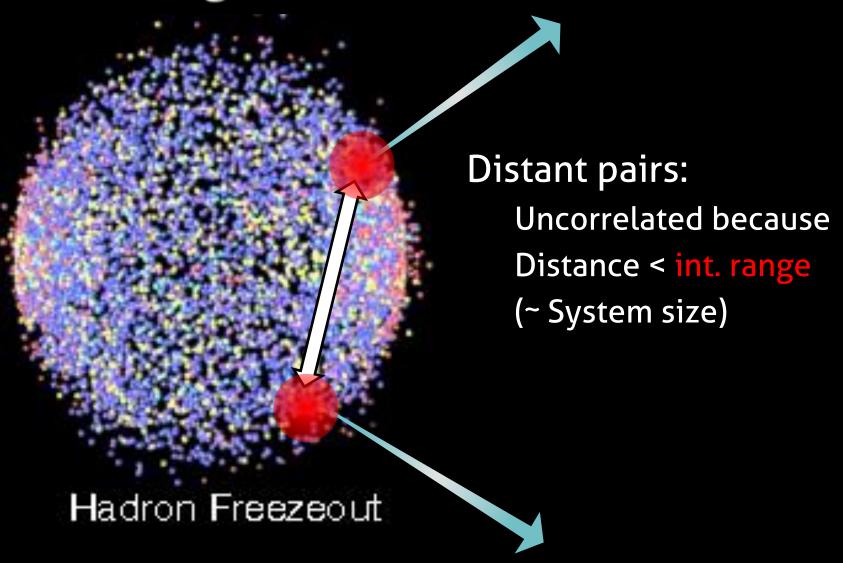
Correlation from FSI

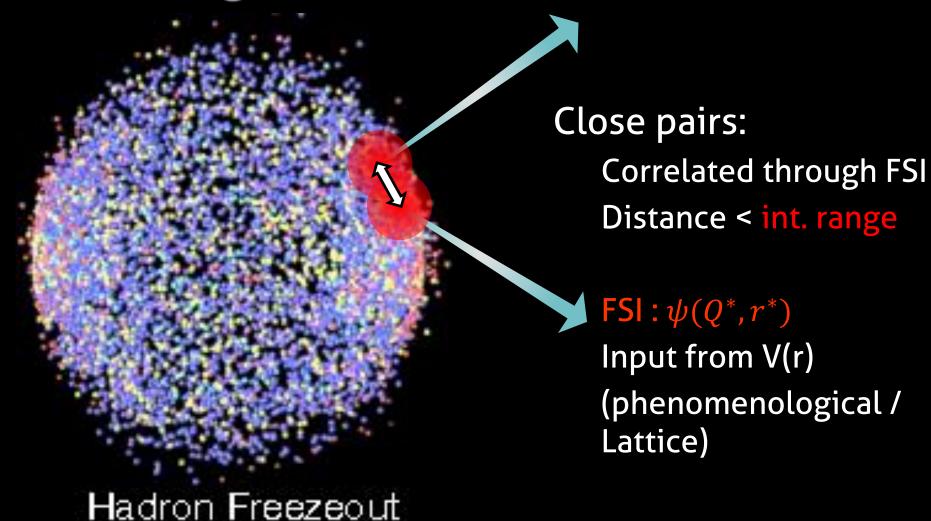


Source func × Wave func diff.

ΩΩ Correlation: Statistics?

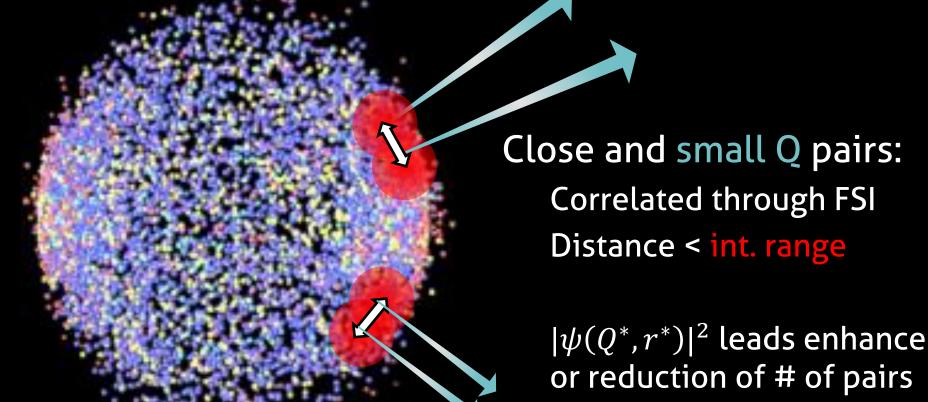
of pair A(Q)

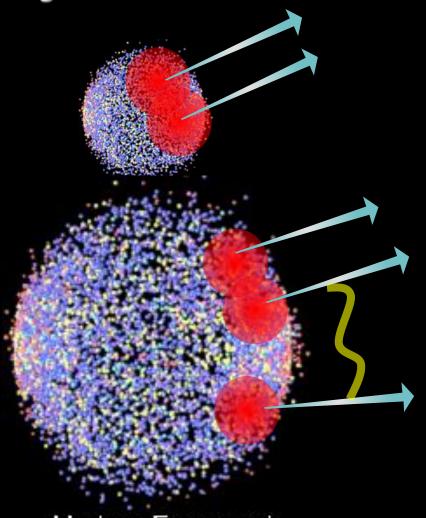

To have 100 pairs at low Q:


Acceptance × Efficiency: 0.01-0.1

Probability of events with more than 2Ω (assuming Poisson) 0.12 for 0-10% 10⁻⁴ for 60-80%

 $10^{11} - 10^{15}$ events : not realistic at LHC?


Not impossible at Future **High-Intensity Facilities?** (e.g., J-PARC: int. rate 108 Hz)


Close but large Q pairs: Correlated through FSI Distance < int. range $\text{Oscillating } |\psi(Q^*,r^*)|^2$ washes out correlation

 $C(Q) \propto \int_r S(r) |\chi_Q(r)|^2 - |j_0(Qr)|^2$ Hadron Freezeout

Hadron Freezeout

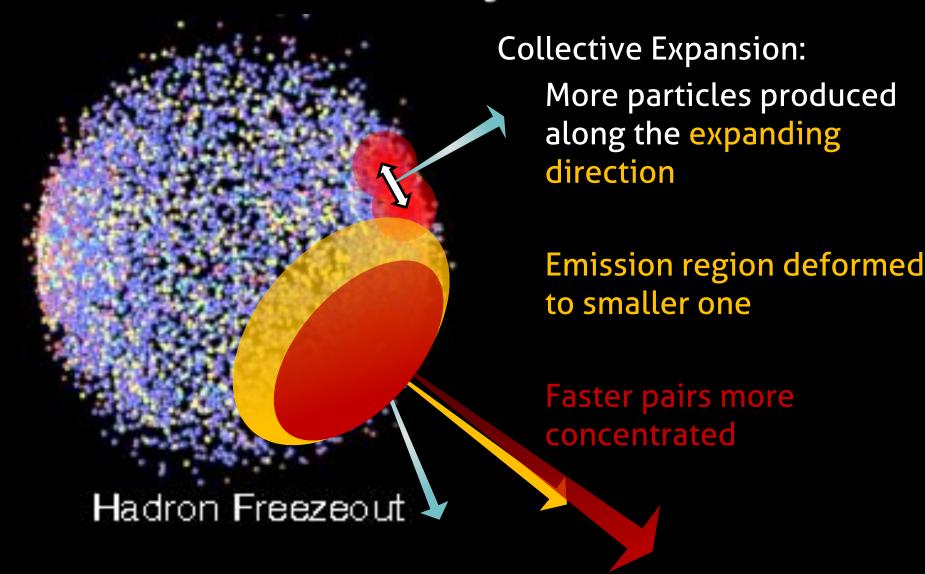
System Size?

Small System:

Most of observed pairs with small Q correlated

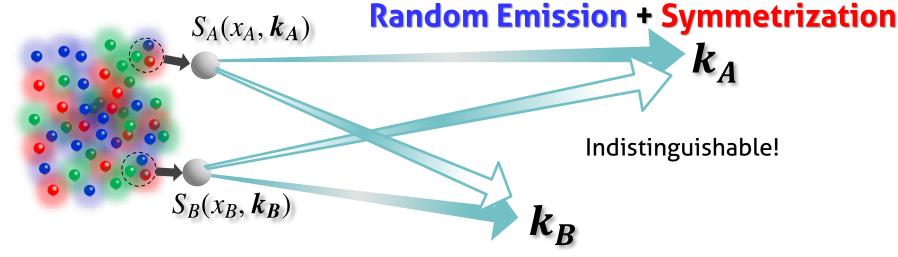
Large System:

Less pairs coming from close distance


Important Remark:

Coulomb FSI for charged pairs!

Hadron Freezeout


Conclusion: measure small Q pairs coming from small region!

Effect of Collectivity

120

Quantum Statistics (HBT/GGLP)

$$\psi_{AB} = \frac{1}{\sqrt{2}} \underbrace{\left(e^{ik_A \cdot x_A} e^{ik_B \cdot x_B} \pm e^{ik_A \cdot x_B} e^{ik_B \cdot x_A}\right)}_{= \begin{cases} e^{iK \cdot X} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK \cdot X} \sqrt{2} i \sin(\mathbf{Q} \cdot \mathbf{r}) \end{cases}}_{= \begin{cases} e^{iK \cdot X} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK \cdot X} \sqrt{2} i \sin(\mathbf{Q} \cdot \mathbf{r}) \end{cases}}_{= \begin{cases} e^{iK \cdot X} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK \cdot X} \sqrt{2} i \sin(\mathbf{Q} \cdot \mathbf{r}) \end{cases}}_{= \begin{cases} e^{iK \cdot X} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK \cdot X} \sqrt{2} i \sin(\mathbf{Q} \cdot \mathbf{r}) \end{cases}}_{= \begin{cases} e^{iK \cdot X} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK \cdot X} \sqrt{2} i \sin(\mathbf{Q} \cdot \mathbf{r}) \end{cases}}_{= \begin{cases} e^{iK \cdot X} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK \cdot X} \sqrt{2} i \sin(\mathbf{Q} \cdot \mathbf{r}) \end{cases}}_{= \begin{cases} e^{iK \cdot X} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK \cdot X} \sqrt{2} i \sin(\mathbf{Q} \cdot \mathbf{r}) \end{cases}}_{= \begin{cases} e^{iK \cdot X} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK \cdot X} \sqrt{2} i \sin(\mathbf{Q} \cdot \mathbf{r}) \end{cases}}_{= \begin{cases} e^{iK \cdot X} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK \cdot X} \sqrt{2} i \sin(\mathbf{Q} \cdot \mathbf{r}) \end{cases}}_{= \begin{cases} e^{iK \cdot X} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK \cdot X} \sqrt{2} i \sin(\mathbf{Q} \cdot \mathbf{r}) \end{cases}}_{= \begin{cases} e^{iK \cdot X} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK \cdot X} \sqrt{2} i \sin(\mathbf{Q} \cdot \mathbf{r}) \end{cases}}_{= \begin{cases} e^{iK \cdot X} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK \cdot X} \sqrt{2} i \sin(\mathbf{Q} \cdot \mathbf{r}) \end{cases}}_{= \begin{cases} e^{iK \cdot X} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK \cdot X} \sqrt{2} i \sin(\mathbf{Q} \cdot \mathbf{r}) \end{cases}}_{= \begin{cases} e^{iK \cdot X} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK \cdot X} \sqrt{2} i \sin(\mathbf{Q} \cdot \mathbf{r}) \end{cases}}_{= \begin{cases} e^{iK \cdot X} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK \cdot X} \sqrt{2} i \sin(\mathbf{Q} \cdot \mathbf{r}) \end{cases}}_{= \begin{cases} e^{iK \cdot X} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK \cdot X} \sqrt{2} i \sin(\mathbf{Q} \cdot \mathbf{r}) \end{cases}}_{= \begin{cases} e^{iK \cdot X} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK \cdot X} \sqrt{2} i \sin(\mathbf{Q} \cdot \mathbf{r}) \end{cases}}_{= \begin{cases} e^{iK \cdot X} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK \cdot X} \sqrt{2} i \sin(\mathbf{Q} \cdot \mathbf{r}) \end{cases}}_{= \begin{cases} e^{iK \cdot X} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK} \sqrt{2} i \cos(\mathbf{Q} \cdot \mathbf{r}) \end{cases}}_{= \begin{cases} e^{iK} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \end{cases}}_{= \begin{cases} e^{iK} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \end{cases}}_{= \begin{cases} e^{iK} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \end{cases}}_{= \begin{cases} e^{iK} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \end{cases}}_{= \begin{cases} e^{iK} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \end{cases}}_{= \begin{cases} e^{iK} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}) \\ e^{iK} \sqrt{2} \cos(\mathbf{Q} \cdot \mathbf{r}$$

Fourier tr. of the emission func.

Constraining the QCD Phase Boundary with Data from Heavy Ion Collisions