Studies for Barrel ToF with $\phi\phi\pi^0$

Bernhard Roth

Experimentelle Hadronenphysik Ruhr-Universität Bochum

PANDA Collaboration Meeting Jülich, 2009

Outline

- PANDA Barrel ToF studies
 - $\phi\phi\pi^0$ signal and background
- 2 Analysis
 - Detector setup and software
 - Event reconstruction and selection
 - Results
- PandaRoot
 - Selection
 - Results
- 4 Conclusions

PANDA Barrel ToF

- Pro
 - Barrel ToF in the PANDA Detector would improve PID capabilities
 - Especially for pion/kaon separation at low momentum
 - Thin design for using minimum on space and material budget
- Contra
 - Every subdetector adds material which particles have to pass
 - Total resolution for photon reconstruction is decreased
 - Total efficiency is also decreased

PANDA Barrel ToF

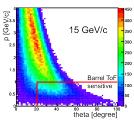
Pro

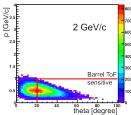
- Barrel ToF in the PANDA Detector would improve PID capabilities
- Especially for pion/kaon separation at low momentum
- Thin design for using minimum on space and material budget

Contra

- Every subdetector adds material which particles have to pass
- Total resolution for photon reconstruction is decreased
- Total efficiency is also decreased

MC simulations give us the opportunity to pre-estimate the advantages and disadvantages of such a subdetector.


Signal

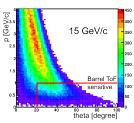

$$p\bar{p}
ightarrow \phi \, \phi \, \pi^0 \, (\phi
ightarrow K^+ \, K^-)$$

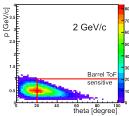
- ullet possibility for glueballs in $\phi\phi$ decay
- at $p = 2 \,\mathrm{GeV/c}$ (close to threshold)
- slow kaons in final state
- dataset with 100 k events

$$\rightarrow K^+ K^- \pi^+ \pi^- \pi^0$$

- pion/kaon separation important
- $\sigma_B \approx 51 \,\mu \mathrm{b}$
- dataset of 10 M events

Distribution of kaons in Monte Carlo data of signal

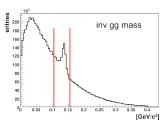

Signal

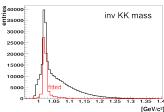

$$p\bar{p}
ightarrow \phi \, \phi \, \pi^0 \, (\phi
ightarrow K^+ \, K^-)$$

- ullet possibility for glueballs in $\phi\phi$ decay
- at $p = 2 \,\mathrm{GeV/c}$ (close to threshold)
- slow kaons in final state
- dataset with 100 k events

$$p\bar{p} \rightarrow K^+ K^- \pi^+ \pi^- \pi^0$$

- pion/kaon separation important
- $\sigma_B \approx 51 \,\mu \mathrm{b}$
- dataset of 10 M events

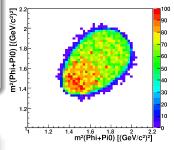

Distribution of kaons in Monte Carlo data of signal


Detector setup and software

- the analysis was done with a detector setup described in the PANDA Physics Book
- a Barrel ToF device is not considered
- PID is not taken into account
- the analysis was done with the BaBar-like software
- for comparison the analysis was redone with the latest stable revision of PandaRoot (Aug 09)

Event reconstruction and selection

- the decay chain is recombined from its detected final state particles
- no PID: all charged tracks as kaon candidates
- mass window to select π^0
- constraints: π^0 mass, beam energy, momentum and vertex
- selection of best candidate per event
- analysis of background decay with same selection criteria



Results

Signal

- Efficiency for signal: 19 %
- Dalitz plot: only slight fluctuations in efficiency
- Less efficiency for kaons with low momentum

Dalitz plot of signal.

- All events are suppressed
 - \rightarrow suppression $\eta_B > 10^7$ w/o PID

Results

Signal

- Efficiency for signal: 19 %
- Dalitz plot: only slight fluctuations in efficiency
- Less efficiency for kaons with low momentum

Dalitz plot of signal.

- All events are suppressed
 - \rightarrow suppression $\eta_B > 10^7$ w/o PID

Signal to background ratio is:

$$\frac{S}{N} = \sigma_S \, \epsilon_S \, \mathcal{B}_S \cdot \frac{\eta_B}{\sigma_B \, \mathcal{B}_B} \quad \Longleftrightarrow \quad \sigma_S = \frac{S}{N} \cdot \frac{\sigma_B \mathcal{B}_B}{\epsilon_S \, \mathcal{B}_S \, \eta_B} \tag{1}$$

for $\frac{S}{N}=10$ this analysis would be sensitive for the signal up to 1

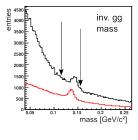
$$\sigma_S \approx 1.11 \,\mathrm{nb}$$
 (3)

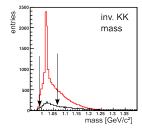
estimate for additional cut on Kaon PID (5% miss ID per pion):

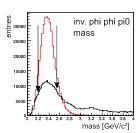
$$\sigma_{S} \approx 2.8 fb$$
 (4)

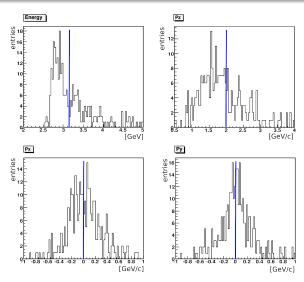
1

branching fraction
$$\mathcal{B}_S = \mathcal{B}_{(\phi\phi\pi^0)} = 0,2392 \pm 0,0058$$
 $\mathcal{B}_B = \mathcal{B}_{(\pi^0)} = 0,98798 \pm 0,00032$ efficiency $\epsilon_S = 19\%$ (2) $\eta_B > 10^7$ cross section $\sigma_B \approx 51 \,\mu\mathrm{b}$

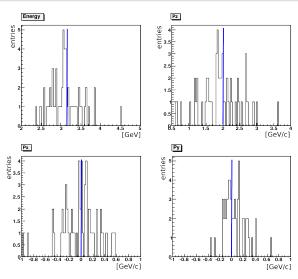

PandaRoot


Redo of this analysis with PandaRoot.


There were several issues, which make it impossible to reproduce the whole analysis:


- frequent crashes in full simulation
- workaround needed to generate 3 k events of signal and same for background
- invariant mass cuts used for selection
- selection of best candidate per event by self defined χ^2
- kinematic fitting on beam and vertex not yet available

PandaRoot, BaBar-like (normalized)



Components of 4vector at the vertex, w/o cuts on masses.

Same diagrams, but with selections on invariant masses like shown before.

Results with PandaRoot

- efficiency for signal is $\epsilon_S = 2\%$
- some background events passed the selection
- background suppression is $\eta_B = 231$

$$\sigma_S \approx 456 \,\mu \mathrm{b}$$
 (5)

- central workdir would be useful
- a lot of files have to be handled

Conclusions

- analysis of $\phi\phi\pi^0$ at $2\,{\rm GeV/c}$ considering $\pi^+\pi^-K^+K^-\pi^0$ as background
- PID was not taken into account
- ullet reached background suppression of $\eta_B > 10^7$
- ⇒ Barrel ToF not necessary
 - redo of analysis with PandaRoot
 - only small datasets available
 - vertex and kinematic fitting not available
 - insufficient background suppression of $\eta_B=231$
- ⇒ analysis and detector studies not yet possible with PandaRoot