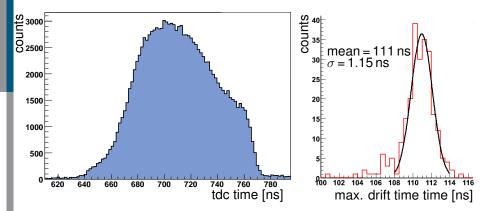
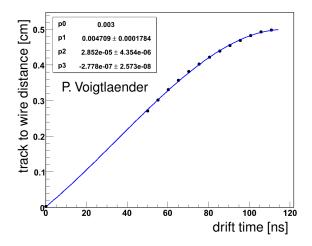

News from the COSY-TOF Straw Tube Tracker XXX. Panda Meeting

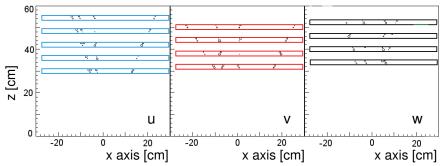
September 8, 2009 | Matthias Röder


Straw Tube Tracker

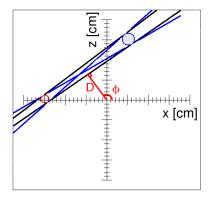
- 2740 drift tubes (*ℓ*=1m, ⊘=1cm)
 - Arranged in 26 layers
 - 3 orientations for tracking
- Drift time information used to measure track to wire distance
- Ar:CO₂ 9:1 at 1.2 bar pressure
- Operated in Vacuum $\leq 5 \cdot 10^{-3}$ mbar
 - ⇒ Gas leakage on permeation level



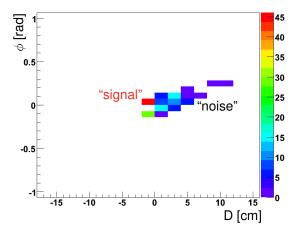
Sum TDC Spectra for All Channels


- Same drift time spectra for all straws e.g. 1% spread in max. drifttime
- ⇒ Common calibration for the whole STT

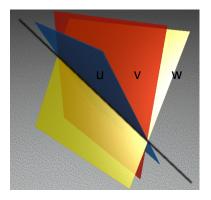
Calibration from Drift time Spectrum


 Straw Tube Tracker drift time to track-wire distance calibration from spectrum analysis

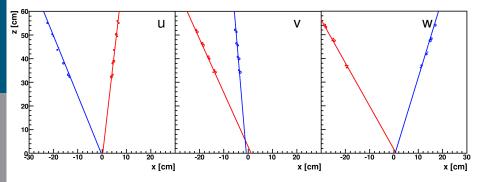
TOF Tracking Strategy


- Split hits into 3 orientations (u, v, w)
- 2 Find all 2D tracks in each orientation
- 3 Combine 2D tracks to 3D tracks
- Perform a linear regression with hits ssociated to the 3D track

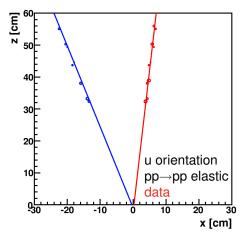
Track Finding I: Hough Transformation


- Calculate D and ϕ parameters
 - For all four common tangents
 - Of all hit pairs in the same layer orientation

Track Finding II: Hough Accumulator


- Accumulate D, phi pairs in a 2D histogram
- Find maxima in each orientation with #hits > threshold
 - \Rightarrow Each maximum defines a plane in 3D space

Track Finding III: Plane Matching


- Intersect planes pair wise (uv, vw, wu) \Rightarrow 3 Lines
- If 3 maxima stem from a real track these lines are close to each other ⇒ selection criterion
- Average the 3 lines to get the track

Track Fitting I: Method

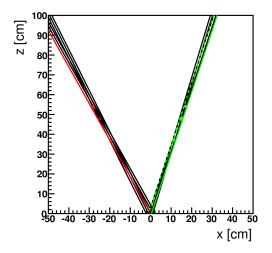
- Average line as start values for the fit
- Hits from Hough maxima are associated to the track (if close enough to average line)
- Minimise orthogonal distances from line to isochrones (Minuit)

Track Fitting II: pp→pp Elastic Example

- Double layer efficiency > 90%
- Very little noise from straws
- \Rightarrow STT data is very good for tracking

Transition from Monte Carlo to Data

Track fitting


Worked from the beginning

Transition from Monte Carlo to Data

Track finding

- Calibration inaccuracies (alignment * drift time calibration)
- \Rightarrow Bad signal/noise requires large bin sizes for accumulator
- ⇒ Plane matching inefficient
 - Need working tracking to refine calibration [DONE]
- \Rightarrow Improved software to handle several maxima
 - From "small enough" bin sizes
 - And "low enough" thresholds

Low Threshold Example

Example of track finding under "rough" conditions

Work in Progress

To do:

- 1 Analyse fit residuals
- 2 Refine straw positioning / drift time calibration
- 3 Be happy about improved spatial resolution and reconstruction efficiency
- 4 Go to 1
 - Should have reliable numbers for December meeting

Conclusion

Conclusion

- COSY-TOF STT tracking is now working with data
- COSY-TOF STT data is very well usable for tracking
- Straw positioning and calibration improvement in progress