STT Simulations: state of the art

Susanna Costanza and Lia Lavezzi Pavia Group

PANDA Collaboration Meeting at Jülich September 7-11, 2009

The simulation environment Representation Packages devoted to global tracking ■ LHEtrack → helix fit ■ GENFIT → Kalman fit Macro chain: simulation – digitization – reconstruction – fit Mainter Setup: MVD + STT + EMC + TOF + MDT + DRC + passive elements for simulation MVD + STT for reconstruction Main Information on macros, geometry files, magnetic field maps used and details on the reconstruction and fitting procedures can be find in: Resentations taken during the last collaboration meetings Report (available online on the tracking wiki page) Preliminary version of tracking TDR

Costanza

Systematic tests

- **@** Studies of:
 - Momentum resolution
 - e Efficiency
- Output in the second second
 - Ø Straw tubes length
 - Ø Skew angle
 - Orift tube resolution curves

Dependance on straw tubes length

Simulation

- 10000 μ^{-} @ 1 GeV/c
- $\phi \in [0^\circ, 360^\circ]$
- θ =
 - $\{20^{\circ}, 25^{\circ}, 30^{\circ}, 35^{\circ}, 40^{\circ}\} \pm 2.5^{\circ}$
 - $\{50^{\circ}, 80^{\circ}, 110^{\circ}, 140^{\circ}\} \pm 5^{\circ}$
- Geometry layouts: 120cm & 150cm

Studies

- STT + MVD
 - Efficiency
 - Resolution

llaboration Meetii 2002/6/8

PANDA Collaboration Meeting

Momentum resolution @ different θ

Zoom on $\theta \rightarrow [15^\circ, 30^\circ] \pm 0.5^\circ$

Momentum resolution @ different θ

Values of the Kalman momentum resolution (%)

heta	120 CM	150 cm
20 ± 2.5	2.07	4.03
25 ± 2.5	1.77	1.95
30 ± 2.5	1.62	1.65
35 ± 2.5	1.64	1.70
40 ± 5	1.59	1.55
50 ± 5	1.62	1.60
80 ± 5	1.52	1.53
110 ± 5	1.60	1.59
140 ± 5	2.43	2.49

_			
	$\theta \pm 0.5^{\circ}$	120 CM	150 cm
/	15°	21.98	6.75
	16°	19.84	4.94
	17°	19.07	3.81
	18°	13.76	3.49
	19°	6.77	3.05
	20 [°]	5.98	2.59
	21°	5.34	1.96
	22 [°]	4.15	1.85
	23°	3.14	1.79
	24 [°]	3.53	2.04
	25°	2.52	1.77
	26°	2.33	1.61
	27°	1.80	1.65
	28°	1.68	1.68
	29 °	1.63	1.65
	30 °	1.64	1.65

za PANDA Collaboration Me

7

Jülich, 8/9/2009

Efficiency @ different θ angles

Zoom on $\theta \rightarrow [15^\circ, 30^\circ] \pm 0.5^\circ$

Costanza

Efficiency @ different θ angles

Values of the Kalman		$\theta \pm 0.5^{\circ}$	120 CM	150 CM		
			15°	49.94	71.97	
el		(70)		16°	54.17	77.00
θ (°)	120 CM	150 cm	_ /	17°	56.19	81.26
20 ± 2.5	60.37	71.52		18°	57.94	89.49
25 ± 2.5	65.78	94.49		19°	62.87	95.25
30 ± 2.5	63.41	97.83		20 [°]	71.79	100.9
35 ± 2.5	62.17	98.90		21°	79.70	103.9
40 ± 5	62.26	92.39		22°	80.15	102.1
50 ± 5	62.03	94.31		23°	84.88	100.5
80 ± 5	59.38	81.08		2 4°	100.0	113.4
110 ± 5	59.76	88.33		25°	9 2 .74	98.86
140 ± 5	37.97	62.09		26°	93.70	96.19
				27°	96.96	97.20
				28°	97.63	97.47

29°

30°

98.11

98.05

97.79

97.99

Dependance on the skew angle

Skew angle	momentum resolution $(\sigma_z = 1 \text{ cm})$	momentum resolution (σ _z = RMS z residuals)
3°	1.58%	1.59%
4°	1.58%	1.57%
5°	1.57%	1.58%
10°	1.50%	1.51%

By changing the σ_z in the Kalman, we do **not** get **significant differences** in the momentum resolution for STT+MVD, since the z info from the MVD is already very precise

→in the Kalman, it's worth giving a higher weigth to the most precise information we have, i.e. the **drift radius**

S. Costanza

Dependance on drift tube resolution curves

Simulation

- 10000 μ⁻ @ 0.3, 1, 5 GeV/c
- $\phi \in [0^\circ, 360^\circ]$
- $\theta \in [20^\circ, 140^\circ]$

Drift tube resolution curves

- Juelich experimental curve without magnetic field
- Simulated curve with magnetic field
- Flat curve with $\sigma_{xy} = 100 \ \mu m$
- Flat curve with $\sigma_{xy} = 150 \ \mu m$
- Flat curve with σ_{xy} = 300 µm

PANDA Collaboration Meeting -

Dependance on drift tube resolution curves: momentum resolution

@ 0.3 GeV/c	Resolution (%) @ 1 GeV/c	@ 5 GeV/c
1.08	1.63	3.24
1.13	1.63	3.20
1.17	1.60	3.29
1.31	1.89	3.97
1.60	2.51	5.38

Dependance on drift tube resolution curves: efficiency

S. Costanza

Technical Design Report for:

PANDA Tracking System

Strong Interaction Studies with Antiprotons

FANDA Collaboration September 4, 200

Work in progress: Tracking TDR

I Done:

□ poster presented at the conference Frontier detectors for Frontier Physics (La Biodola, May 09) →*The Straw Tube Tracker of the PANDA* experiment, article in press on NIM A Proceedings (doi:10.1016/j.nima.2009.06.105) 16

PANDA Collaboration Meeting – Jülich, 8/9/2009

Conclusions I To do:

I Tests with real pattern recognition ☐ Tests with MVD + STT + GEM detectors

