Nuclear Energy Density Functionals

Xavier Roca-Maza

Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano, Italy INFN, Sezione di Milano, Via Celoria 16, I-20133, Milano Italy

MuSTAR week 2018 Milano, September 24nd-28th 2018

Table of contents:

- Brief introduction: Nuclear Energy Density Functionals
- Drawbacks? spin / isospin excitations
- Results
- Conclusions

Density Functional Theory: Kohn-Sham realization

For any interacting system, there exists a local single-particle potential $V_{KS}(r) = V_{ext} + V_H + V_{xc}$, such that the exact ground-state density of the interacting system equals the ground-state density of the auxiliary non-interacting system.

Prog.Part.Nucl.Phys. 64 (2010) 120-168

 \bullet Kohn-Sham scheme depends entirely on whether accurate approximations for V_{xc} can be found.

• Due to V_{xc} , the KS goes beyond a simple HF ($V_{HF} = V_H + V_F$) and it has the advantage of being local.

Nuclear Energy Density Functionals: Main types of successful EDFs derived from the Hartree-Fock

(mean-field) approximation

• **Relativistic H o HF models**, based on Lagrangians where effective (heavy) mesons carry the interaction.

$$\begin{split} \mathcal{L}_{\text{int}} &= \bar{\Psi} \Gamma_{\sigma}(\bar{\Psi}, \Psi) \Psi \Phi_{\sigma} &+ \bar{\Psi} \Gamma_{\delta}(\bar{\Psi}, \Psi) \tau \Psi \Phi_{\delta} \\ &- \bar{\Psi} \Gamma_{\omega}(\bar{\Psi}, \Psi) \gamma_{\mu} \Psi A^{(\omega)\mu} &- \bar{\Psi} \Gamma_{\rho}(\bar{\Psi}, \Psi) \gamma_{\mu} \tau \Psi A^{(\rho)\mu} \\ &- e \bar{\Psi} \hat{Q} \gamma_{\mu} \Psi A^{(\gamma)\mu} \end{split}$$

Non-relativistic HF models, based on Hamiltonians where effective interactions are proposed and tested:

$$V_{\text{Nucl}}^{\text{eff}} = V_{\text{attractive}}^{\text{long-range}} + V_{\text{repulsive}}^{\text{short-range}} + V_{\text{SO}}$$

- Fitted parameters contain (important) correlations beyond the mean-field
- ► Nuclear energy functionals are phenomenological → not directly connected to any NN (or NNN) interaction

Drawbacks on current EDFs ???

On the one side,

► H(F)+RPA method based on nuclear effective interactions of the Skyrme, Gogny or Relativistic (can be understood as an approximate realization of an EDF) ⇒ have been shown to be accurate in the description of binding energies, charge radii and the excitation energies of different Giant resonances

On the other side,

there are still some open problems.

We briefly overview here recent improvements on the Skyrme functional in the spin and isospin channels

Spin and Isospin excitations in Nuclei

We aim at improving the current description of the...

- ► Isobaric Analog state: isospin mode conected with isospin symmetry breaking in nuclei and with the neutron skin thickness of heavy nuclei ⇒ properties of the nuclear EoS.
- Gamow Teller Resonance: spin-isospin mode.
 Analogous transitions to β-decay. Sensitive to the isospin channel of the functional and on the spin-orbit splittings
- Spin Dipole Giant Resonance: spin-dipole mode connected with the isospin properties of the EoS and sensitive to the tensor interaciton.

The isobaric analog state energy: E_{IAS}

- Analog state can be defined: $|A\rangle = \frac{T_{-}|0\rangle}{\langle 0|T_{+}T_{-}|0\rangle}$
- Displacement energy or E_{IAS}

$$\mathsf{E}_{\mathrm{IAS}} = \mathsf{E}_{\mathsf{A}} - \mathsf{E}_{\mathsf{0}} = \langle \mathsf{A} | \mathcal{H} | \mathsf{A} \rangle - \langle \mathsf{0} | \mathcal{H} | \mathsf{0} \rangle = \frac{\langle \mathsf{0} | \mathsf{T}_{+} [\mathcal{H}, \mathsf{T}_{-}] | \mathsf{0} \rangle}{\langle \mathsf{0} | \mathsf{T}_{+} \mathsf{T}_{-} | \mathsf{0} \rangle}$$

 $\begin{array}{l} E_{IAS} \neq 0 \text{ only due to Isospin Symmtry Breaking terms } \mathcal{H} \\ E_{IAS}^{exp} \text{ usually accuratelly measured !} \end{array}$

Coulomb direct contribution: very simple model

- Assuming indepentent particle model and good isospin for $|0\rangle$ ((0|T_+T_-|0\rangle = 2T_0 = N-Z)

$$E_{IAS} \approx E_{IAS}^{C,direct} = \frac{1}{N-Z} \int \left[\rho_n(\vec{r}) - \rho_p(\vec{r}) \right] U_C^{direct}(\vec{r}) d\vec{r}$$

where $U_C^{direct}(\vec{r}) = \int \frac{e^2}{|\vec{r}_1 - \vec{r}|} \rho_{ch}(\vec{r}_1) d\vec{r}_1$

• Assuming also a uniform neutron and proton distributions of radius R_n and R_p respectively, and $\rho_{ch} \approx \rho_p$ one can find

$$E_{\text{IAS}} \approx E_{\text{IAS}}^{\text{C,direct}} \approx \frac{6}{5} \frac{Ze^2}{R_p} \left(1 - \sqrt{\frac{5}{12}} \frac{N}{N-Z} \frac{\Delta r_{np}}{R_p} \right)$$

One may expect: the larger the Δr_{np} (stiff EoS around saturation) the smallest E_{IAS}

E_{IAS} in Energy Density Functionals (No Corr.)

Phys. Rev. Lett. 120, 202501 (2018)

Nuclear models (EDFs) where the nuclear part is isospin symmetric and U_{ch} is calculated from the ρ_p

Corrections: within self-consistent HF+RPA

Within the **HF+RPA** one can **estimate** the E_{IAS} accounting (in an effective way) for **short-range correlations and effects of the continuum** (if a large sp base is adopted).

• **Coulomb exchange** exact (usually Slater approx.):

$$U_C^{x,exact}\phi_i(\vec{r}) = -\frac{e^2}{2}\int d^3r'\;\frac{\phi_j^*(\vec{r}')\phi_j(\vec{r})}{|\vec{r}-\vec{r}'|}\phi_i(\vec{r}')$$

• The **electromagnetic spin-orbit** correction to the nucleon single-particle energy (non-relativistic),

$$\epsilon_i^{emso} = \frac{\hbar^2 c^2}{2m_i^2 c^4} \langle \vec{l}_i \cdot \vec{s}_i \rangle x_i \int \frac{1}{r} \frac{dU_C}{dr} |R_i(r)|^2$$

where x_i : $g_p - 1$ for Z and g_n for N; $g_n = -3.82608545(90)$ and $g_p = 5.585694702(17)$, $R_i \rightarrow R_{nl}$ radial wf.

Corrections:

• Finite size effects (assuming spherical symmetry):

$$\begin{split} \rho_{ch}(q) &= \left(1 - \frac{q^2}{8m^2}\right) \left[G_{E,p}(q^2)\rho_p(q) + G_{E,n}(q^2)\rho_n(q)\right] \\ &- \frac{\pi q^2}{2m^2} \sum_{l,t} \left[2G_{M,t}(q^2) - G_{E,t}(q^2)\right] \langle \vec{l} \cdot \vec{s} \rangle \int_0^\infty dx \frac{j_1(qx)}{qx} |R_{nl}(x)x^2|^2 \end{split}$$

• Vacuum polarization: lowest order correction in the fine-structure constant to the Coulomb potential $\frac{eZ}{r}$:

$$V_{vp}(\vec{r}) = -\frac{2}{3} \frac{\alpha e^2}{\pi} \int d\vec{r}' \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} \mathcal{K}_1\left(\frac{2}{\bar{\lambda}_e}|\vec{r} - \vec{r}'|\right)$$

where *e* is the fundamental electric charge, α the fine-structure constrant, \hbar_e the reduced Compton electron wavelength and

$$\mathfrak{K}_{1}(\mathbf{x}) \equiv \int_{1}^{\infty} dt e^{-\mathbf{x}t} \left(\frac{1}{t^{2}} + \frac{1}{2t^{4}}\right) \sqrt{t^{2} - 1}$$

Corrections:

• Isospin symmetry breaking (Skyrme-like): two parts (contact interaction)

charge symmetry breaking $+ V_{CSB} = V_{nn} - V_{pp}$

 $V_{CSB}(\vec{r}_{1},\vec{r}_{2}) \equiv \frac{1}{4} \left[\tau_{z}(1) + \tau_{z}(2) \right] s_{0}(1 + y_{0}P_{\sigma})$

 τ_z Pauli in isospin space; P_σ are the usual projector operators in spin space.

$$\label{eq:charge independence} \begin{split} & \mbox{charge independence} \\ & \mbox{breaking}^* \\ & V_{CIB} = \frac{1}{2} \left(V_{nn} + V_{pp} \right) - V_{pn} \\ & V_{CIB}(\vec{r}_1, \vec{r}_2) \equiv \frac{1}{2} \tau_z(1) \tau_z(2) u_0(1 + z_0 P_\sigma) \\ & \mbox{* general operator form } \tau_z(1) \tau_z(2) - \frac{1}{3} \vec{\tau}(1) \cdot \vec{\tau}(2). \end{split}$$

Our prescription $\tau_z(1)\tau_z(2)$ not change structure of HF+RPA.

• Opposite to the other corrections, **ISB contributions depends** on new parameters that need to be determined!

SAMi-ISB: E_{IAS}

Phys. Rev. Lett. 120, 202501 (2018)

Measurement of $\Delta r_{np} \rightarrow$ determine ISB in the nuclear medium (or the other way around).

SAMi-ISB: E_{IAS} in the Sn isotopic chain

Phys. Rev. Lett. 120, 202501 (2018)

These corrections have been implemented on top of a Skyrme functional: SAMi. Let us discuss about SAMi in some detail.

Motivation for SAMi: Gamow Teller Resonance

The E_x is not properly described in H(F)+RPA

- SGII^a: earliest attempt to give a quantitative description of the GTR
- SkO^{'b}: accurate in ground state finite nuclear properties and improves the GTR
- PKO1^c: relativistic HF, reasonable GTR still not perfect
- Relativistic H^d: residual interaction modified *ad-hoc*

^a PLB **106**, 379 (1981), ^b PRC **60**, 014316 (1999), ^c PRL **101**, 122502 (2008), ^d PRC 69, 054303

Motivation SAMi: which gs properties are important for describing the E_x^{GTR} ?

The study^a of the GTR and the spin-isospin Landau-Migdal parameter G₀['] using several Skyrme sets,

- concluded that G'₀ is not the only important quantity in determining the excitation energy of the GTR
- spin-orbit splittings also influences the GTR

- Empirical indications^b suggest that G₀' > G₀ > 0
- Not a very common feature within available Skyrme forces^c

^a M. Bender, J. Dobaczewski, J. Engel, and W. Nazarewicz, Phys. Rev. C **65**, 054322 (2002); ^b T. Wakasa, M. Ichimura, and H. Sakai, Phys. Rev. C **72**, 067303 (2005); T. Suzuki and H. Sakai, Phys. Lett. B **455**, 25 (1999), ^c Li-Gang Cao, G. Colo, and H. Sagawa, Phys. Rev. C **81**, 044302 (2010)

Skyrme Aizu Milano interaction: SAMi

Parameter set and nuclear matter properties:

Table: SAMi parameter set and saturation properties with the estimated standard deviations inside parenthesis

	value(σ)			value(o)	
to	-1877.75(75)	MeV fm ³	$ ho_\infty$	0.159(1)	fm ⁻³
t_1	475.6(1.4)	MeV fm ⁵	e_{∞}	-15.93(9)	MeV
t_2	-85.2(1.0)	MeV fm ⁵	$\mathfrak{m}_{\mathrm{IS}}^*$	0.6752(3)	
t ₃	10219.6(7.6)	MeV fm ^{$3+3\alpha$}	\mathfrak{m}_{IV}^*	0.664(13)	
x ₀	0.320(16)		J	28(1)	MeV
\mathbf{x}_1	-0.532(70)		L	44(7)	MeV
x ₂	-0.014(15)		K_∞	245(1)	MeV
x ₃	0.688(30)		Go	0.15	(fixed)
Wo	137(11)		G'0	0.35	(fixed)
W'_0	42(22)				
α	0.25614(37)				

SAMi: Gamow Teller Resonance in ⁴⁸Ca, ⁹⁰Zr and ²⁰⁸Pb

Operator: $\sum_{i=1}^{A} \boldsymbol{\sigma}(i) \tau_{\pm}(i)$

Figure: Gamow Teller strength distributions in ⁴⁸Ca (upper panel), ⁹⁰Zr (middle panel) and ²⁰⁸Pb (lower panel) as measured in the experiment [T. Wakasa *et al.*, Phys. Rev. C **55**, 2909 (1997), K. Yako *et al.*, Phys. Rev. Lett. **103**, 012503 (2009), A. Krasznaborkay *et al.*, Phys. Rev. C **64**, 067302 (2001), H. Akimune *et al.*, Phys. Rev. C **52**, 604 (1995) and T. Wakasa et al., Phys. Rev. C **85**, 064606 (2012)] and predicted by SLy5, SkO', SGII and SAMi forces.

SAMi: Spin Dipole Resonances in ⁹⁰Zr and ²⁰⁸Pb

K. Yako *et al.*, Phys. Rev. C **74**, 051303(R) (2006) **Tensor is missing:** different channels not well described

SAMi-T: Spin Dipole Resonances in ⁹⁰Zr and ²⁰⁸Pb with tensor force Shihang Shen et al., work in progress

- Tensor force included and guided by ab initio calculations on neutron and neutro-proton drops.
- 1⁻ is the channel clearly improved by including the tensor force

SAMi families: insights on correlations

• Isoscalar and isovector Giant Quadrupole resonances

• See also studies on the isovector Giant Dipole Resonance (Phys.Rev. C85 (2012) 041302, Phys. Rev. C 88, 024316 (2013), Phys. Rev. C 92, 064304 (2015)), the Antianalog Giant Dipole resonance (Phys. Rev. C 92, 034308 (2015), Phys. Rev. C 94, 044313 (2016)) or the Pygmy Dipole (arXiv:1807.10118).

Conclusions:

- SAMi functionals account for the most relevant quantities in order to improve the description of charge-exchange nuclear resonances
- SAMi and SAMi-T: GTR in ⁴⁸Ca and the GTR, and SDR in ⁹⁰Zr and ²⁰⁸Pb are predicted with good accuracy by SAMi and further improved by SAMi-T
- SAMi-ISB functional reproduces the experimental IAS excitation energy in ²⁰⁸Pb (and Sn isotopes) as well as a neutron skin in agreement with other experiments.
- SAMi-J and SAMi-m systematically varied interactions are useful in studying correlations.
- SAMi based functionals do not deteriorate the description of other nuclear observables
- applicability in nuclear physics and astrophysics

Thank you for your attention!