Mass Measurements with MRTOF at RIKEN RIBF

Michiharu Wada for the SHE-Mass Collaboration KEK, Wako Nuclear Science Center

Mass measurement of short-lived nuclei
Summary of measurement @GARIS-II
Mc and Nh measurement preparation
Plan at the end of ZeroDegree

Why Atomic Mass?

Mass Deficit = Binding Energy B $B_{Z,N} = M_p Z + M_n N - M_{Z,N}$ $+ M_e Z + M_e Z +$

- Most fundamental nuclear property Defines Stability, Decay mode, Structure
- Finger Print: Unique value for a nucleus
- Key values for NucleoSynthesis

Derivation of mass : Sn (n-separation energy)

ASTROPHYSICAL JOURNAL LETTERS, 848:L12 (59pp), 2017 October 20

Masses to be measured

Experimentally Synthesized : ≈3300

Synthesized but Mass unknown : ≈1000

note: many known masses were measured indirectly

Mass Measurements of Short-lived Nuclei

Typical Mass Measurement Results

²⁵⁰Md⁺⁺ measurement

≈ 1 event /1000 s

Mass determined with $\delta m/m = 6 \times 10^{-7}$

P. Schury et al, PRC 95(2017)011305(R)

S. Kimura et al, IJMS 430, 134-142 (2018)

Masses Measured in 2016 summer - 2017 spring

- 6 first masses in trans-uranium elements (Es, Md isotopes)
- > 30 first direct mass measurements
- z_{-} known masses agree in $I\sigma$ with Penning Trap data,
 - while a few discrepancy in old indirect measurements
 - shortest $T_{1/2} = 10$ ms, with precision 2×10^{-7}

[g] H.S. Xu et al IJMS349(2013)162 and others

MRTOF plays a role in Mass Measurements

Mass Precision vs Half Life

SHE-Mass-I @ RILAC

SHE-Mass-II @E6

Side View

Top View

Large free area GasCell+Trap+MRTOF all in one

SHE-Mass-II @E6 RIBF

Masses of Super Heavy Nuclides

- I. pin down masses of hot-fusion "island"
- 2. confirm A and Z of hot-fusion SHE

Candidates in first Hot Fusion SHE Mass Measurement

²⁴³Am(⁴⁸Ca, 3n)²⁸⁸Mc \rightarrow ²⁸⁴Nh \rightarrow ²⁸⁰Rg 0.5 mg/cm² 2 pµA 8.5 pb 4/day@GARIS

 $^{243}Am(^{48}Ca, 4n)^{287}Mc \rightarrow ^{283}Nh \rightarrow ^{279}Rg$

other interesting mass measurements

²⁴⁸Cm(¹⁴N, 4n)²⁵⁸Lr mass anchor for 278Nh ²⁴⁴Pu(⁴⁸Ca, xn)^{292-x}Fl \rightarrow ^{288-x}Cn anchor for even hot fusion SHE</sup>

Parallel Measurements @ 3 facilities of RIKEN RIBF

ZD-MRTOF @ F11 as 3rd Prototype SLOWRI

@F11 Symbiotic Experiment will be run

e.g.

- * Interaction σ exp.
- * In-beam γ exp.

after their measurements, all garbage goes to FII

mass measurement can use them without extra charge

Case study:

In-beam exp for 79Ni region 40 pnA U beam A week of run 1% our total efficiency

What is expected?

e	⁸⁰ Ge	⁸¹ Ge	⁸² Ge	⁸³ Ge	⁸⁴ Ge	⁸⁵ Ge
				9.64e-3	1.1e+1	3.83e-2
-				0%	0.002%	0%
a	⁷⁹ Ga	⁸⁰ Ga	⁸¹ Ga	⁸² Ga	⁸³ Ga	⁸⁴ Ga
		3.2e-3	1.44e+1	5.94e+1	2.91e+1	5.96e-2
		0%	0.005%	0.094%	0.19%	0.004%
1	⁷⁸ Zn	⁷⁹ Zn	⁸⁰ Zn	⁸¹ Zn	⁸² Zn	⁸³ Zn
	4.16e-5	2.61e+0	6.64e+1	2.26e+1	3.34e+0	3.79e-3
	0%	0.005%	0.41%	1.403%	1.682%	0.038%
u	77Cu	⁷⁸ Cu	⁷⁹ Cu	⁸⁰ Cu	⁸¹ Cu	⁸² Cu
	1.99e-6	3.9e-1	3.87e+0	3.84e-1	6.03e-2	5.72e-5
	0%	0.033%	2.076%	4.947%	4.817%	0.109%
	⁷⁶ Ni	77Ni	78Ni	⁷⁹ Ni	⁸⁰ Ni	⁸¹ Ni
	8.86e-10	3.46e-3	5.21e-2	4.32e-3	2.86e-4	2.2e-7
-	0%	0.037%	4.265%	10.773%	10.048%	0.307%
D	75Co	76Co	n _{Co}	78Co	79Co	⁸⁰ Co
		4.26e-5	9.4e-4	5.42e-5	1.56e-5	
-		0.023%	6.248%	15.098%	14.003%	1.647%
е	⁷⁴ Fe	75Fe	⁷⁶ Fe	77Fe	78Fe	79Fe
		1.84e-7	4.19e-6	5.07e-7		
-		0.012%	6.704%	19.964%	1000	
	7388-	7488	75.8.8	70.65	7755	

Expected TOF Spectrum (simulation)

Summary

- MRTOF is compatible to short-lived nuclei
- Efficient mass spectrograph (multiple nuclides at once)
- Precise and Accurate (novel referencing method)
 - Applicable to Super Heavy Elements
 - Compatible also to r-process, rp-process nuclides

Collaborators for the SHE-Mass project

M. Wada, P. Schury, Y.Ito, F. Arai, S. Kimura, D. Kaji, H. Haba, K. Morimoto, M. Rosensuch, I.Murray, J.Y.Moon, T. Niwase, S. Ishizawa, T. Tanaka, A.Takamine, M. Reponen, T. Sonoda, Y. Hirayama, Y.X. Watanabe, H. Miyatake, M. MacCormick, H. Koura, K. Morita, A. Ozawa, H. Wollnik

Wako_Nuclear Science Center, IPNS, KEK Nishina Center for Accelerator-based Science, RIKEN Institute of Physics, Tsukuba University Advanced Science Center, Japan Atomic Energy Agency Department of Physics, Kyushu University Institute of Basic Science, Korea University Paris-Scaley, France New Mexico State University, USA

