

Isotope separation and particle identification at the Super-FRS

Chiara Nociforo

GSI Helmholtzzentrum für Schwerionenforschung Darmstadt - Germany

Contents

- Introduction to in-flight production of rare isotope beams (RIBs)
- Introduction to Super-FRS

separation method: FRS vs Super-FRS

Super-FRS vs worldwide new-generation in-flight separators

Particle identification of relativistic ions

standard PID detectors

Super-FRS detector requirements & developments

Super-FRS unique experiments

Chart of nuclides

About 6000 nuclides are bound, only about half of them are known. Most of the unobserved nuclides are neutron-rich.

Basic method: production

High Energy

 $E_{proj} \sim$ 100-1000 MeV/u , $\lambda \sim$ 2-0.2 fm

Nucler reactions to produce RIBs

- fragmentation
- spallation
- fission High and Low
- fusion Energy
- transfer

Thick target (few g/cm²) to increase the yields $Y(Z,A) = N_t I_{proj} \sigma(Z,A) \epsilon$

Basic method: selection

Separation method momentum-loss-achromat

Because the fragments have approximately the same velocity they will loose different momenta in the degrader depending on their atomic number Z and will exit with different magnetic rigidity.

Achromatic in velocity, but dispersive in mass and charge

The final position and angle do not depend on momentum.

J.P. Dufour et al. *NIM A* 248 (1986) 267 K.-H. Schmidt et al. *NIM A* 260 (1987) 287

Degraders

H. Folger et al., NIM A 303 (1991) 24

Wedge shaped disc and double-shaped wedge machined with μm precision.

Basic method: separation

FRagment Separator

More than 25 years operation!

Discovery of 60 new isotopes

Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Discovery and cross-section measurement of neutron-rich isotopes in the element range from neodymium to platinum with the FRS

J. Kurcewicz ^{a,*}, F. Farinon ^{a,b,1}, H. Geissel ^{a,b}, S. Pietri ^a, C. Nociforo ^a, A. Prochazka ^{a,b}, H. Weick ^a, J.S. Winfield^a, A. Estradé^{a,c}, P.R.P. Allegro^d, A. Bail^e, G. Bélier^e, J. Benlliure^f, G. Benzoni^g, M. Bunce^h, M. Bowry^h, R. Caballero-Folchⁱ, I. Dillmann^{a,b}, A. Evdokimov^{a,b}, J. Gerl^a, A. Gottardo^j, E. Gregor^a, R. Janik^k, A. Kelić-Heil^a, R. Knöbel^a, T. Kubo¹, Yu.A. Litvinov^{a,m}, E. Merchan^{a,n}, I. Mukha^a, F. Naqvi^{a,o}, M. Pfützner^{a,p}, M. Pomorski^p, Zs. Podolyák^h, P.H. Regan^h, B. Riese^{a,b}, M.V. Ricciardi^a, C. Scheidenberger^{a,b}, B. Sitar^k, P. Spiller^a, J. Stadlmann^a, P. Strmen^k, B. Sun^{b,q}, I. Szarka^k, J. Taïeb^e, S. Terashima a, I, J.J. Valiente-Dobón J, M. Winkler A, Ph. Woods T

- $T_{1/2}$ long enough to survive for 300 ns ToF
- measured production cross sectons down up to 1 pb

J. Kurcewicz et al., *PLB* 717 (2012) 371

¹⁰⁰Sn study

ARTICLE

C.B. Hinke et al., Nature 486 (2012) 341

101:10.1038/nature1111b

Superallowed Gamow–Teller decay of the doubly magic nucleus ¹⁰⁰Sn

C. B. Hinke¹, M. Böhmer¹, P. Boutachkov², T. Faestermann¹, H. Geissel², J. Gerl², R. Gernhäuser¹, M. Górska², A. Gottardo³, H. Grawe², J. L. Grębosz⁴, R. Krücken^{1,5}, N. Kurz², Z. Liu⁶, L. Maier¹, F. Nowacki⁷, S. Pietri², Zs. Podolyák⁸, K. Sieja⁷, K. Steiger¹, K. Straub¹, H. Weick², H.-J. Wollersheim², P. J. Woods⁶, N. Al-Dahan⁸, N. Alkhomashi⁸, A. Ataç⁹, A. Blazhev¹⁰, N. F. Braun¹⁰, I. T. Čeliković¹¹, T. Davinson⁶, I. Dillmann², C. Domingo-Pardol¹², P. C. Doornenball³, G. de France¹⁴, G. F. Farrienly⁸, F. Farinon², N. Goel², T. C. Habermann², R. Hoischen², R. Janik¹⁵, M. Karnyl¹⁶, A. Kaşkaş⁹, I. M. Kojouharov², Th. Kröll¹⁷, Y. Litvinov², S. Myalski⁴, F. Nebel¹, S. Nishimura¹³, C. Nociforo², J. Nyberg¹⁸, A. R. Parikh¹⁹, A. Procházka², P. H. Regan⁸, C. Rigollet²⁰, H. Schaffner², C. Scheidenberger², S. Schwertel¹, P.-A. Söderström¹³, S. J. Steer⁸, A. Stolz²¹ & P. Strmeň¹⁵

Be $+ \ ^{124}$ Xe @ 1 GeV/u

≤ 1 ¹⁰⁰Sn/hour!

measured T_{1/2} , β-decay end-point energy, GT strength, the largest so far measured in allowed nuclear β-decay, establishing the 'superallowed' nature of this pure spin-flip ¹⁰⁰Sn (0+)→ ¹⁰⁰In (1+(πg_{9/2}-1, νg_{7/2})) transition

NUSTAR facility at FAIR

Primary Beams

- 5x10¹¹ ²³⁸U²⁸⁺ (pulse)
 3.5x10¹¹ ²³⁸U²⁸⁺/s (DC)
 @1.5 GeV/u
- factor **100** in intensity over present

Secondary Beams

- broad range of RIBs up to 1-2 GeV/u
- up to factor **10000** in intensity over present

The Super-FRS at FAIR

(H. Geissel et al. NIMB 204(2003)71)

Based on experience and successful experimental program at the FRS:

- Multi-stage separation (high resolution spectrometer)
- Multi-branch system serving experimental areas and storage-rings

Technical Design Report (version submitted on April 24th 2008)

H. Geissel, M. Winkler, H. Weick, K.-H. Behr, G. Münzenberg, H. Simon, K. Sümmerer, B. Achenbach, D. Acker, D. Ackermann, T. Aumann, J. Äystö, R. Baer, M. Berz, D. Boutin, C. Brandau, A. Brünle, P. Dendooven, G. Fehrenbacher, E. Floch, M. Gleim, W. Hüller, H. Iwase, A. Kalimov, C. Karagiannis, M. Kauschke, A. Kelic, B. Kindler, G. Klappich, E. Kozlova, A. Kratz, T. Kubo, N. Kurz, K. Kusaka, H. Leibrock, J. Lettry, S. Litvinov, Y. Litvinov, B. Lommel, S. Manikonda, A. Marbs, G. Moritz, C. Mühle, C. Nociforo, J. A. Nolen, H. Penttilä, W. Plass, Z. Podolyak, A. Prochazka, I. Pschorn, T. Radon, H. Ramakers, J. Saren, G. Savard, C. Scheidenberger, P. Schnizer, M. Schwickert, B.M. Sherrill, B. Sitar, A. Stafinak, R. Stieglitz, M. Svedentsov, N.A. Tahir, An. Tauschwitz, O. Tarasov, M. Tomut, P. Vobly, H. Welker, R. Wilfinger, Ch. Will, J.S. Winfield, Y. Xiang, M. Yavor, A. Yoshida, A.F. Zeller.

Layout of the Super-FRS

Parameters of the Super-FRS

	Bρ _{max}	Δp/p	$\Delta\theta/\theta$, $\Delta\phi/\phi$	Resolving Power
Super-FRS	20 Tm	±2.5 %	±40, ±20 mr	1500 (40πmm mr)
FRS	18 Tm	±1%	±7.5, ±7.5 mr	1500 (20πmm mr)

Comparison FRS — Super-FRS Transmission gain

Fragmentation

Fission

 Z_{fra}

Apertures (Super-FRS) \approx 2 x Apertures (FRS)

Ion optics design (HEB)

C. Nociforo, GSI AccSeminar 2017

2-stage separation

e.g. ¹⁰⁰Sn

1-stage separator

Fragmentation of 124Xe @ 1 GeV/u

- Strong reduction of contaminants
- Optimization of fragment rate
- Main separator used for secondary reaction studies

2-stage separation

e.g. ¹⁰⁰Sn

1-stage separator 2-stage separator

50 primary fragments (■)
40
30
20

30

N

40

60

20

Fragmentation of ¹²⁴Xe @ 1 GeV/u

- Strong reduction of contaminants
- Optimization of fragment rate
- Main separator used for secondary reaction studies

Advantages of high-energy RIBs

- Thick production target very exotic RIBs
- Pure incoming RIBs incident on secondary target
- Fully stripped reaction products after secondary target
- Strong kinematical forward focusing of reaction products
- High luminosity thick reaction target

Particle interaction with matter

The LS correction gives perfect agreement with the experimental data for bare projectiles. At lower energies the heavy ions are no longer completely stripped. Therefore, z is replaced by the effective charge

$$q_{eff} = z \left[1 - exp \left(\frac{-0.95v}{z^{\frac{2}{3}}v_0} \right) \right] \qquad \text{where } v_0 \text{ is the Bohr velocity.}$$

C. Nociforo, GSI AccSeminar 2017

World map of in-flight RIB facilities

T. Kubo, NIM B 376 (2016) 102

Table 1
Main parameters of the Super-FRS, ARIS, and BigRIPS separators.

Separator	Super-FRS	ARIS	BigRIPS
Facility	FAIR at GSI	FRIB at MSU	RIBF at RIKEN
Primary beams	Up to U	Up to U	Up to U
Beam energy	1.5 GeV/u	≥200 MeV/u¹	345 MeV/u
Beam intensity ^a	$3.5 \times 10^{11} {}^{238}\text{U/s}$	$5 \times 10^{13} ^{238}\text{U/s} (8 \text{p} \mu \text{A})^g$	6.24×10^{12} /s (1 pµA)
Beam power ^a	20 kW for 238U	400 kW for all	82 kW for 238U
Mode	CW (also pulse)	CW	CW
Acceptances $\Delta \theta$	±40 mrad	±40 mrad	±40 mrad
$\Delta \phi$	±20 mrad	±40 mrad	±50 mrad
$\Delta p/p$	±2.5%	±5%	±3%
Max. rigidity (Bp)	20 Tm	8 Tm	9.5 Tm
Number of stages	2+	2(3)	2+
Resolution $P/\Delta P^b$	1766/3532d	1720/3000-4000	1270/3420
Length	176.2 m ^e	86.5 m	78.2 m
Energy degraders at 1st/2nd stages ^c	Achromatic/achromatic	Momentum compression/achromatic	Achromatic/achromatic
References	[6,7]	[9]	[10-12]

a Goal values.

T. Kubo, *NIM B* 376 (2016) 102

^b First-order momentum resolution for an object size of 1 mm at the first and second stages, respectively.

^c Type of degraders.

^d 750/1500 for an object size of $\sigma(x) = 1$ mm.

e High-energy branch.

f 310 MeV/u for low-Z ions,

 $[^]g$ 1 pµA (particle micro Amps) corresponds to 6.24×10^{12} particles/s.

High intensity and radiation level

The Super-FRS operation needs totally new concepts.

High intensity and radiation level

The Super-FRS operation needs totally new concepts.

The Super-FRS takes well established FRS detecting system concept to its operation limit.

Slit system requirements

- High stopping power
- Vacuum compatible
- Heat resistant

DENSIMET® 97% tungsten, 3% iron and nickel Density: 18.5 g/cm³

- Precision
- Endurance
- Reproducibility

X-Slit pre-series

Pre-series FAT passed

Specification	Test result	
Integral leakage rate	6 × 10 ⁻¹⁰ mbar.l/s	
Minimum gap	50 µm uniformly over the surface	
Movement precision	0.1 mm	
Stop switch activation	0.1 mm	
Endurance	6600 open-close cycles	
Heat resistance	500 W beam power absorption	

Nociforo, GSI AccSeminar 2017

Interface compatible with robot handling

Modular self-aligned connectors

- plates for gas, water and electrical connections (interface)
- at all insertions of the Pre-Separator vacuum chambers
- scalable and modular
- designed and tested by Super-FRS group (T. Blatz, C. Karagiannis, C. Schlör)

In-flight PID

$$Z \leftarrow -dE/dx = f(Z, \beta)$$

atomic number

$$A/Q = \frac{B\rho}{\gamma\beta m_u}$$

Z ≠ Q charge state

 $B\rho - ToF - \Delta E$ method

$$A = \frac{T_{\text{KE}}}{(\gamma - 1) m_u}$$

mass number, T_{KE} kinetic energy

ToF = L β c

Clean full isotope identification on event-by-event basis (PID)

Tracking detector FLF2DK1 Operation mode with slow-extracted beams FLF2 FMF2 FMF2DK3 FHF1DK1 FHF1DK2 from SIS FRF3DK1 FRF3 <105/s **Intensity** 10¹¹/s <107/s <1010/s <109/s

Tracking requirements Bo reconstruction

momentum resolution (1st order)

D ~ 6 cm/%,
$$\Delta x < 1$$
mm $\rightarrow \Delta p/p \sim 10^{-4}$

$$B\rho = B\rho_0 \left(1 - \frac{x_{FHF1} - M x_{FMF2}}{D}\right) + \Delta(B\rho)$$

where $\Delta(B\rho)$ includes corrections for additional momentum spread due to additional matter and reaction

Time Projection Chamber (TPC)

FRS TPC: R. Janik et al., NIM A 640 (2011) 54

²⁴O study

PRL 102, 152501 (2009)

PHYSICAL REVIEW LETTERS

week ending 17 APRIL 2009

\$

One-Neutron Removal Measurement Reveals ²⁴O as a New Doubly Magic Nucleus

R. Kanungo, ^{1,*} C. Nociforo, ² A. Prochazka, ^{2,3} T. Aumann, ² D. Boutin, ³ D. Cortina-Gil, ⁴ B. Davids, ⁵ M. Diakaki, ⁶ F. Farinon, ^{2,3} H. Geissel, ² R. Gernhäuser, ⁷ J. Gerl, ² R. Janik, ⁸ B. Jonson, ⁹ B. Kindler, ² R. Knöbel, ^{2,3} R. Krücken, ⁷ M. Lantz, ⁹ H. Lenske, ³ Y. Litvinov, ² B. Lommel, ² K. Mahata, ² P. Maierbeck, ⁷ A. Musumarra, ^{10,11} T. Nilsson, ⁹ T. Otsuka, ¹² C. Perro, ¹ C. Scheidenberger, ² B. Sitar, ⁸ P. Strmen, ⁸ B. Sun, ² I. Szarka, ⁸ I. Tanihata, ¹³ Y. Utsuno, ¹⁴ H. Weick, ² and M. Winkler²

node "

Z
10 F2
9
8
240
2.7 2.8 2.9 3.0 A/q

High-resolution momentum ($\sim 1.5 \cdot 10^{-4}$) in 1*n* removal channel

$$P_f^{lab} = (1 + \frac{x_4 - Mx_2}{D_{24}})z_f B \rho$$

, GSI AccSeminar 2017

Tracking requirements

momentum resolution (1st order)

D ~ 6 cm/%,
$$\Delta x < 1$$
mm $\rightarrow \Delta p/p \sim 10^{-4}$

$$B\rho = B\rho_0 \left(1 - \frac{x_{FHF1} - M x_{FMF2}}{D} \right) + \Delta(B\rho)$$

where $\Delta(B\rho)$ includes corrections for additional momentum spread due to additional matter and reaction

- large acceptance, e.g. Super-FRS $\Delta p/p=\pm~2.5\%$ (higher order corrections) operation in vacuum, thin & low Z windows to minimize angular spread
- higher rate (~2 kHz/mm²), large area (~10³ mm²), large dynamic range

Tracking requirements

momentum resolution (1st order)

$$D \sim 6 \text{ cm/\%}$$
, $\Delta x < 1 \text{mm} \rightarrow \Delta p/p \sim 10^{-4}$

$$B\rho = B\rho_0 \left(1 - \frac{x_{FHF1} - M x_{FMF2}}{D} \right) + \Delta(B\rho)$$

where $\Delta(B\rho)$ includes corrections for additional momentum spread due to additional matter and reaction

Time Projection Chamber (TPC)

FRS TPC: R. Janik et al., NIM A 640 (2011) 54

Twin Gas Electron Multiplication (GEM)-TPC

F. Garcia et al., GSI Scientific Report (2014)

C. Nociforo, GSI AccSeminar 2017

FRS Twin TPC

Built at CUBratislava

200x70x30 mm³

Delay line, multi-hit TDC (V1290) readout

A. Prochazka et al., GSI Scientific Report (2014)

ToF requirements A/g reconstruction

 $\approx \frac{\Delta B \rho}{2} +$

Monte Carlo simulations (MOCADI)

$$\sigma_x = 0.5 \text{ mm}, \ \sigma_t = 20 \text{ ps}$$

$$\beta = 0.8, L = 55 \text{ m}$$

 $\frac{\Delta ToF}{ToF}$

ToF requirements

- homogeneous and large-area material (at the Super-FRS in total 70000 mm²)
- start/stop fast (triggering) signals
 - \rightarrow Plastic scintillators (0.5 3 mm) readout by PMTs

best FRS ToF measurements (FWHM= 17 ps)

A. Ebran et al., NIM A 728 (2013) 40

- higher rate (>10⁶ Hz)
 - → segmented plastics scintillator, optical scintillating fibers

cheap but material get quickly damaged, not simple to be replaced in vacuum

ToF detector requirements

- radiation-hard material
 - → ToF silicon/diamond strip detectors arranged in planar geometry
 - total channels (strips): 1400 chs
 - timing resolution (full): $\sigma_t < 35$ ps, $\sigma_t = 20$ ps for U
 - rate capability: 0.5 kHz/mm², < 15 kHz/strip
 - activity: < 1 kGy/year</p>

2 x pcCVD -DD 20x20x0.3 mm³

F. Schirru et al., J. Phys. D: Appl. Phys. 49 (2016) 215105

V. Eremin et al., *NIM A* 796 (2015) 158

∆E requirements

A suitable ΔE detector needs to have

- good energy resolution ($\Delta Z < 0.4$)
- high counting rate capability (pile-up correction)
- robustness against beam bombardment

Gas ionization chambers are

- extremely stable if equipped with gas flow system
- can provide energy resolution as good as that of semiconductor detectors
- charge-state selective
- large-scale detector easy to fabricate

Multiple Sampling Ionization Chamber (MUSIC)

FRS MUSIC: A. Stolz, et al., GSI Scientific Report (1998)

Charge state selection

$$B\rho_1 = \frac{p_1}{q_1} \longrightarrow B\rho_2 = \frac{p_2}{q_2}$$

Stripper between two MUSIC stages

MUSIC for fission fragment detection

Summary

- Overview of in-flight separation method of RIBs
- The Super-FRS at FAIR and its PID detecting system challenges: high intensity & high precision
- New discovery have been closely linked to new technical developments of accelerators and detectors

The Super-FRS is well suited to nuclear experiments at the forefront of science.