CBM Day-1 Physics

Outline:

- CBM physics case
- Day-1 setup and program
- SIS100 beam requirements

CBM – Goals

Mission:

Systematically explore QCD matter at large baryon densities with high accuracy and rare probes.

Fundamental questions:

Equation of State of QCD matter at neutron star densities Phase structure of QCD matter Chiral symmetry restoration at large densities Bound states with strangeness Charm in dense baryonic matter

CBM – Strategy

CBM typical running scenario:

1% target => 10^9 beam/s with slow extraction $T_{spill} \sim 10$ s

CBM physics and observables

QCD equation-of-state

- collective flow of identified particles
- particle production at (sub)threshold energies

Phase transition

- excitation function of hyperons
- excitation function of LM lepton pairs

Critical point

event-by-event fluctuations of conserved quantities

Chiral symmetry restoration at large ρ_B

- in-medium modifications of hadrons
- dileptons at intermediate invariant masses

Strange matter

- (double-) lambda hypernuclei
- Search for meta-stable objects (e.g. strange dibaryons)

Heavy flavour in cold and dense matter

excitation function of charm production

CBM experimental setup (day-1)

- Tracking acceptance: $2^{\circ} < \theta_{lab} < 25^{\circ}$
- Free streaming DAQ
- R_{int} = 10 MHz (Au+Au)

 $\begin{array}{l} R_{int} \approx 0.5 \; MHz \\ \mbox{full bandwith:} \\ \mbox{Det.} - \mbox{Entry nodes} \\ \mbox{reduced bandwidth} \\ \mbox{Entry nodes} - \mbox{Comp. farm} \end{array}$

with R_{int} (MVD)=0.1 MHz

Software based event selection

Day-1 funding: ~ 90% secured

Day-1 setup = MSV setup - Compute Performance - ECAL Phase-1 = Day1 with full Compute Performance + ECAL

CBM Day 1 – unique measurements

m_{inv} (GeV/c²)

CBM beam requirements for Day-1

Max interaction rate: Max beam intensity:

500 kHz 5 · 10⁷ Au-ions/s

Beam focus & halo

Figure 3. Schematically drawn beam line aperture in HADES/CBM cave (not to scale) for a case when CBM conducts experiments. The requested emittance is constrained by a long distance between the last magnet and a small beam spot on the CBM target.

N.Herrmann, Dec.15, 2017

FAIR Experiments and Accelerators, Darmstadt

CBM beam emittance requirements

CBM Internal Note, "Beam quality requirement for CBM/HADES experiments at SIS100/300", V6.0, J. Pietraszko, W.F.J. Müller (07/2016)

- 1. Beam spot smaller than 2 mm in diameter in both directions (99.73 % of the beam) for beam energies above 4 AGeV.
- 2. CBM beam divergence smaller than 6 mrad.

(17 meters distance between the last focusing magnet and target point and only 70% of the beam line aperture will be filled)

3. The CBM beam line aperture: the smallest opening is 10 mm

(MVD detector, 10.0 cm from the focal point)

- 4. The requested beam emittance is constrained by the beam divergence (6 mrad) and small beam diameter at the target point, 2 mm at 4 AGeV. Thus, the beam emittance should be 3 mrad * 1 mm = 3.0 mm mrad at 4 AGeV.
- 5. The BEAM HALO around the CBM focal point should be reduced below 10⁻⁵ of the total beam intensity at a distance greater than 5 mm away the beam symmetry axis.

+ Fast, fail-safe, beam abort system with reaction time of ~500 μ s

CBM ion species and intensities for Phase 1

Phase 1 with full rate capability anticipated for +1a after first beam!

Isotope	Energies [AGeV] min-max	beam intensity in spill / s
р	2-29	10 ¹¹ /s
¹² C	3 - 14	10 ¹⁰ /s
⁴⁰ Ca	3-14	4*10 ⁹ /s
⁵⁸ Ni	2[1] - 13	4*10 ⁹ /s
⁹⁶ 402r	$2[^{1}] - 12$	$4*10^7$ /s
⁹⁶ ₄₄ Ru	2[1] - 13	4*10 ⁷ /s
¹⁰⁷ Ag	$2[^{1}] - 12$	$2*10^9$ /s
¹⁹⁷ Au [²]	$2[^{1}] - 11$	10 ⁹ /s
²³⁸ U	$2[^{1}] - 11$	10 ⁹ /s

Table 2. A list of proposed beam isotopes, energies and requested beam intensities for CBM at SIS100 experiments.

Extraction: slow extraction, duty cycle better than 50%.

Beam emittance:

	HADES at SIS100 - 5 mrad mm at 2 AGeV
	CBM at SIS100 and SIS300 - 3.0 mm mrad at 4 AGeV.
Beam HALO:	HADES and CBM:
	below 10 ⁻⁵ of the total beam intensity at a distance greater than 5 mm
Spill structure:	
-	Intensity fluctuations below a factor of 3 (integration time \approx 30ns).

CBM scientific program at SIS100 is unique

- explore QCD matter at neutron star core densities
- employ high statistics capibility
 - to achieve high-precision of multi-differential observables
 - to enable rare processes as sensitive probes

CBM day-1 setup allows start of program with significant discovery potential

- excitation function of di-lepton production (full performance)
- excitation function of hyperons production
- study of hypernuclei
- initial intensity limited to max. interaction rate 0.5 MHz (Au+Au)
- full beam quality demands

CBM Phase 1 will address the full set of observables with full rate capability

• CBM's initial rate limitation will be overcome ~1 year after start of operation