Compressed Baryonic Matter experiment at FAIR

Ilya Selyuzhenkov (GSI / EMMI / MEPhI) for the CBM Collaboration

The 3rd international conference on particle physics and astrophysics

Moscow, Russia

October 3, 2017

Rich structure of the QCD matter phase diagram

Net-baryon density at SIS100 FAIR energies

Net-baryon density reaches a value 5-15 times of the normal matter:
experimentally access the region of mixed / quarkyonic phase

Quark matter equation-of-state at large baryon densities, coexistence (quarkyonic) & partonic phases:

- Hadron yields, collective flow, correlations, fluctuations
- (Multi-)strange hyperons (K, Λ , Σ , Ξ , Ω) production at (sub)threshold energies

Quark matter equation-of-state at large baryon densities, coexistence (quarkyonic) & partonic phases:

- Hadron yields, collective flow, correlations, fluctuations
- (Multi-)strange hyperons (K, Λ , Σ , Ξ , Ω) production at (sub)threshold energies

Chiral symmetry at large baryon densities:

• In-medium modifications of light vector mesons $\rho, \omega, \phi \rightarrow e^+e^-(\mu^+\mu^-)$ via dilepton measurements Electromagnetic radiation of produced matter

Charm production and propagation at threshold energies

- Excitation function in p+A collisions (J/ ψ , ψ ', D⁰, D[±])
- Charmonium suppression in cold nuclear matter

Strange nuclear matter:

- Λ-Ν, Λ-Λ interaction
- (Double-)lambda hypernuclei
- Meta-stable strange states

Main experimental requirements

High statistics means high reaction rates: 10⁵ - 10⁷ Au+Au reactions/sec

Main experimental requirements

- High statistics needs high event rates: 10⁵ - 10⁷ Au+Au reactions/sec
- Particle identification: hadrons and leptons, displaced ($\sigma \approx 50 \ \mu m$) vertex reconstruction for charm measurements
- Fast, radiation hard detectors & front-end electronics
- Free-streaming readout & 4 dimensional (space+time) event reconstruction
- High speed data acquisition & performance computing farm for online event selection

Compressed Baryonic Matter (CBM) experiment at FAIR

CBM at FAIR, Darmstadt

CBM building layout

HADES: p+p, p+A, A+A limited to low multiplicity A+A optimized for dileptons CBM: p+p, p+A, A+A designed for high multiplicity general purpose detector

Complementary operation of HADES and CBM at FAIR

CBM detector subsystems

Dipole Magnet

bends charged particle's trajectories

STS (Silicon Tracking System) charged particle tracking

MVD (Micro-Vertex Detector) secondary vertex reconstruction

RICH (Ring Imaging Cherenkov)

TRD (Transition Radiation Detector) electron identification

TOF (Time of Flight detector) hadron identification

MUCH (MUon CHambers) muon identification

- **ECAL** (Electromagnetic Calorimeter) electron/photon identification
- **PSD** (Projectile Spectator Detector) collision centrality and reaction plane determination
- **FLES** (First-level Event Selector) online reconstruction / event selection

Subsystems preparation status

TDRs approved by FAIR

TDR in preparation

Dipole Magnet

TOF

STS

MUCH

PSD

MVD

TRD

ECAL

FLES

Ilya Selyuzhenkov The CBM experiment at FAIR 03/10/2017

Physics performance

CBM event and track reconstruction

central AuAu@10AGeV

Particle identification: light hadrons

Beta (TOF detector) vs. charge*momentum (STS detector)

Particle identification: electrons and light nuclei

RICH (electrons)

Proton identification and acceptance

All simulated protons

Proton reconstruction efficiency

sufficient proton coverage at midrapidity

Anisotropic flow & reaction plane determination

Anisotropic flow v_n is defined via Fourier decomposition of azimuthal (ϕ) distribution of produced particles relative to the reaction plane Ψ_{RP} :

$$v_n \{\Psi_{RP}\} = \langle \cos[n(\phi - \Psi_{RP})] \rangle$$

Performance for elliptic flow (v_2) of protons

- "input" model v_2 is recovered using "data-driven" method
- Statistical error projections promises high precision measurements of (strange-)baryons v₂ in a wide p_T range between 0.3 2.0 GeV/c at mid-rapidity already after 2 months of CBM experiment operation

Reconstred hyperon yields in central collisions

UrQMD central Au+Au E_b=10 AGeV

Decay topology reconstruction using the KFParticleFinder

Feasibility of hypernuclei measurements

Expected significant statistics to study different hypernuclei

Simulation results for central Au+Au at E_{h} =8 A GeV

di-electrons

di-muons

2016-09-16 15:23:25

$J/\psi \rightarrow \mu^+\mu^-$ / e⁺e⁻ reconstruction

CBM FAIR phase-0 program (before the start of operation in 2024-25)

- Use 430 out of 1100 CBM RICH multi-anode photo-multipliers (MAPMT) in HADES RICH photon detector (2018)
- Use 10% of the CBM TOF modules including read-out chain at STAR/RHIC (BES II 2019/2020)
- 4 Silicon Tracking Stations in the BM@N in JINR/Dubna (start 2019 with Au-beams up to 4.5 A GeV)
- Project Spectator Detector at the BM@N experiment. Tests and performance studies at the NA61/SHINE SPS experiment.
- mini CBM at GSI/SIS18 full system test with high-rate A-A collisions (2018-2021)

Summary

CBM physics program at SIS100:

• Precision study of the QCD phase diagram in the region of extreme high net-baryon densities. Discovery potential

Unique measurements of rare diagnostic probes with CBM:

• High-precision multi-differential measurements of hadrons incl. multistrange hyperons and dileptons for different beam energies and collision systems.

Key experimental requirements:

- high-rate capability of detectors and DAQ
- online event reconstruction and selection

Status of CBM experiment preparation:

- Technical Design Reports: 6 approved, 3 in preparation
- Extensive performance studies for many physics observables
- Intermediate FAIR phase-0 program