CBM Performance for identified charged hadron anisotropic flow

Viktor Klochkov
(GSI, Frankfurt University)
Ilya Selyuzhenkov
(GSI / MEPhl)
for the CBM Collaboration

GOETHE
UNIVERSITÄT
FRANKFURT AM MAIN

Collision geometry

impact parameter
\leftrightarrow
energy density of the interacting matter

Collision geometry

impact parameter
\leftrightarrow
energy density of the interacting matter

spatial asymmetry of the overlap region
asymmetry of energy distribution

Collision geometry and the transverse anisotropic flow

Asymmetry in coordinate space converts due to interaction into momentum asymmetry with respect to the symmetry plane (reaction plane - RP)

$$
\begin{aligned}
\rho\left(\varphi-\Psi_{R P}\right) & =\frac{1}{2 \pi}\left(1+2 \sum_{n=1}^{\infty} v_{n} \cos \left(n\left(\varphi-\Psi_{R P}\right)\right)\right) \\
v_{n} & =\left\langle\cos \left[n\left(\varphi-\Psi_{R P}\right)\right]\right\rangle
\end{aligned}
$$

Needed components to calculate v_{n} :

- momentum ($\varphi, \mathrm{Y}, \mathrm{p}_{\mathrm{T}}$)
- centrality estimation
- particle identification
- Ψ_{RP} estimation

CBM detector setup

CBM subsystems needed for v_{n} measurements:

- Particle momentum ($\varphi, \mathrm{Y}, \mathrm{p}_{\mathrm{T}}$): STS+MVD
- Centrality estimation: event classes defined with PSD energy or STS multiplicity
- Particle identification: TOF
- Reaction plane (Ψ_{RP}): PSD transverse energy asymmetry / φ distribution in STS

PSD transverse layout

Hole size $=10 \mathrm{~cm}$ Ongoing discussion to increase hole size to 20 cm

Simulation setup

Models	UrQMD (no fragments)
System	Au-Au
Energy	10 AGeV
Statistics	5 M events
CBM geometry	MVD, STS, RICH, TDR, TOF, PSD
PSD geometry	44 modules, 4 central, 10 cm hole, elongated in x
Transport code	GEANT3
Detector response	CBMRoot JUL17

Tracks selection

- Number of hits $\mathrm{N}_{\text {hits }}>3$
- Fit quality $X^{2} / N D F<3$
- $X_{\text {verex }}^{2}<3$

Non-uniformity of azimuthal acceptance corrections are needed!

Particle identification (PID)

https://indico.gsi.de/event/4759/session/25/contribution/16/material/slides/0.pdf
For flow performance in this presentation MC-truth PID was used!

Centrality: estimating model parameters with measured multiplicity

Multiplicity interval $\mathrm{M} \pm \Delta \mathrm{M}$ gives impact parameter distribution b with width σ J.Phys.Conf.Ser. 798 (2017) no.1, 012059

Experimental estimate of the reaction plane with Q-vector

STS

Sum over all selected tracks normalized on multiplicity

$$
\begin{aligned}
& Q_{x}=\frac{1}{M} \sum \cos \phi \\
& Q_{y}=\frac{1}{M} \sum \sin \phi
\end{aligned}
$$

$$
\begin{aligned}
Q_{x} & =\frac{1}{C} \sum_{k} w_{k} \cos \phi \\
Q_{y} & =\frac{1}{C} \sum_{k} w_{k} \sin \phi
\end{aligned}
$$

PSD

Sum over group of modules normalized on total energy in group

$$
\vec{Q}_{P S D_{A}}=\frac{1}{E_{P S D_{A}}} \sum_{k \in A} E_{k} \frac{\overrightarrow{r_{k}}}{\left|r_{k}\right|}
$$

E_{k} - energy deposit in the module
r_{k} - center of the PSD module

Event plane and scalar product methods

$$
v_{n}=\left\langle\cos \left[n\left(\varphi-\Psi_{R P}\right)\right]\right\rangle
$$

- v_{n} with respect to symmetry plane estimated using group of particles (subevent) A:

$$
v_{n}(A ; i)=\frac{\left\langle 2 u_{i} Q_{i}^{n}(A)\right\rangle}{R_{i}^{n}(A)} \quad \begin{gathered}
\vec{u}=(\cos (n \varphi), \sin (n \varphi)) \\
i=(x, y)
\end{gathered}
$$

- Different components provide independent estimates for flow harmonics
- $R_{i}(A)$ shows the sensitivity of subevent A to initial symmetry plane
- Correctiom factor $R_{i}{ }^{n}(A)$ is calculated via correlations of three subevents
\rightarrow standard 3-subevent technique

$$
R_{i}^{n}(A ; B, C)=\sqrt{2 \frac{\left\langle Q_{i}^{n}(A) Q_{i}^{n}(B)\right\rangle\left\langle Q_{i}^{n}(A) Q_{i}^{n}(C)\right\rangle}{\left\langle Q_{i}^{n}(B) Q_{i}^{n}(B)\right\rangle}}
$$

Event plane method:

$$
\mathrm{Q} /|\mathrm{Q}|=1
$$

QnVector Corrections Framework

- Developed for ALICE by J. Onderwaater, V. Gonzalez, I. Selyuzhenkov https://github.com/jonderwaater/FlowVectorCorrections
- Applies corrections* for azimuthal acceptance non-uniformity
\rightarrow corrections calculated from reconstructed azimuthal distributions
- Recentering, twist, rescaling, and rotation correctio are applied separately in different event classes
- Allows to monitor effects of applied corrections

Framework configuration:

- recentering
- twist
- rescaling
*PRC77 034904 (2008)

Correction factor

Different $x-y$ sensitivity due to the magnetic field

Correction factor

$$
R_{i}^{n}(A ; B, C)=\sqrt{2 \frac{\left\langle Q_{i}^{n}(A) Q_{i}^{n}(B)\right\rangle\left\langle Q_{i}^{n}(A) Q_{i}^{n}(C)\right\rangle}{\left\langle Q_{i}^{n}(B) Q_{i}^{n}(B)\right\rangle}}
$$

Large differences between true and reconstructed correction factor due to non-flow correlations (momentum conservation)

Correction factor for mixed harmonic

$$
R_{i}^{n}(A ; B, C, D) \propto \sqrt{\frac{\left\langle Q_{i}^{1}(A) Q_{i}^{1}(B)\right\rangle\left\langle Q_{i}^{1}(A) Q_{i}^{1}(C) Q_{i}^{2}(D)\right\rangle}{\left\langle Q_{i}^{1}(B) Q_{i}^{1}(C) Q_{i}^{2}(D)\right\rangle}}
$$

Mixed harmonic calculation removes/suppresses contribution from non-flow (see backup slides for other combinations)
On next slides only y-component is considered

Correction factor for y-component

Central part has worse resolution. Can be improved with higher granularity

$\pi^{-} v_{1}$ vs rapidity

Good agreement between simulated and reconstructed values

Summary

- Reaction plane reconstruction with 3-subvent technique and mixed harmonic method is implemented and results compared to MC-true
- Results for $\pi^{-} v_{1}$ with event plane from PSD are presented

Next steps

- Flow of protons and kaons
- Study other harmonics
- Include particle identification with TOF
- Study different centrality estimators

