Proposal S471: mCBM@SIS18

A CBM full system test-setup for high-rate nucleus-nucleus collisions at GSI / FAIR

Beamtime request

download of the full version: https://cbm-wiki.gsi.de/foswiki/pub/Public/Documents/mcbm-proposal2GPAC-fullVersion.pdf

CBM – Goals

CBM goal:

systematically explore baryon-rich dense matter with rare probes.

CBM strategy:

radiation hard detectors, free streaming data recording, software based event selection.

CBM – Collaboration: 54 institutions, 460 members

China:

CCNU Wuhan Tsinghua Univ. USTC Hefei CTGU Yichang

Czech Republic: CAS, Rez Techn. Univ. Prague

France: IPHC Strasbourg

Hungary: KFKI Budapest Eötvös Univ.

Germany: Darmstadt TU FATR Frankfurt Univ. IKF Frankfurt Univ. FIAS Frankfurt Univ. ICS GSI Darmstadt Giessen Univ. Heidelberg Univ. P.I. Heidelberg Univ. ZITI HZ Dresden-Rossendorf KIT Karlsruhe Münster Univ. Tübingen Univ. Wuppertal Univ. **ZIB Berlin**

India:

Aligarh Muslim Univ. Bose Inst. Kolkata Panjab Univ. Univ. of Jammu Univ. of Kashmir Univ. of Calcutta B.H. Univ. Varanasi VECC Kolkata IOP Bhubaneswar IIT Kharagpur IIT Indore Gauhati Univ. Korea: Pusan Nat. Univ.

Poland:

AGH Krakow Jag. Univ. Krakow Warsaw Univ. Warsaw TU

Romania:

NIPNE Bucharest Univ. Bucharest

Russia:

IHEP Protvino INR Troitzk ITEP Moscow Kurchatov Inst., Moscow VBLHEP, JINR Dubna LIT, JINR Dubna MEPHI Moscow PNPI Gatchina SINP MSU, Moscow

Ukraine:

T. Shevchenko Univ. Kiev Kiev Inst. Nucl. Research

CBM Scientists

CBM Experimental Setup

- Tracking acceptance: $2^{\circ} < \theta_{lab} < 25^{\circ}$
- Free streaming DAQ

R_{int} = 10 MHz (Au+Au)

except: R_{int} (MVD) = 0.1 MHz

Software based
 event selection

СВМ

CBM experimental challenges

Perform measurements at unprecedented reaction rates

- 10⁵ 10⁷ Au+Au reactions/sec
 - \rightarrow fast and radiation hard detectors
 - \rightarrow free-streaming read-out electronics
 - → high speed data acquisition and high performance computer farm for online event selection
 - \rightarrow 4-D event reconstruction

Identification of leptons and hadrons

Determination of (displaced) vertices ($\sigma \approx 50 \ \mu m$)

CBM readout and online systems

Novel readout scheme

- no hardware trigger of events,
- free streaming (triggerless) data,
- all detector hits with time stamps

full online 4-D track and event reconstruction Requirement: online calibration

Topics to be addressed

- free streaming data transport to the mFLES
- online reconstruction
- offline data analysis
- controls
- detector tests of final detector prototypes

Needs:

permanent test-setup at the host lab

- straight tracks, no B-field
- > high resolution TOF (t_0 TOF stop wall)
- event characterization with PSD prototype

Design of the mCBM Cave - HTD

N.Herrmann, C.Sturm

G-PAC, Darmstadt, Sep. 19, 2017

Monte Carlo shielding calculations (FLUKA)

G-PAC, Darmstadt, Sep. 19, 2017

Design of mCBM test-setup

Hit rates

UrQMD, Au+Au 1.24 AGeV, mbias, incl. δ -electrons

G-PAC, Darmstadt, Sep. 19, 2017

-60

-80

-20

_40

20

0

-20

-40

-60

-100

60

x, cm

40

22000

20000

18000 16000

14000 12000

10000

8000 6000

4000 2000

mCBM – subsystems: STS, MUCH

mSTS

mMUCH

mSTS: 2x stations

Contribution by GSI

- 1st: 2x2 modules
- 2nd: 3x3 modules
 - = 5 half-ladders
 - = 13x 6x6 cm² sensors

mMUCH: 3x layers Contribution by India

- 3x M2 GEM modules
- 18x FEBs per module (STS-XYTER)
- used during CERN beamtest 2016

mCBM – subsystems: TRD & TOF

mTOF

mTRD

SPS 2016

mTRD: 4 layers Contribution by Frankfurt/Münster and Bucharest

 TRD modules incl. read-out from DESY/CERN tests 2017

mTOF

Contribution by China and Heidelberg

- 5x STAR modules
- 5x MRPC counter / module
- read-out scheme is identical to the STAR setup

N.Herrmann, C.Sturm

G-PAC, Darmstadt, Sep. 19, 2017

mCBM – subsystems: PSD & RICH

÷ € CB

mRICH

3x3 – 1 configuration Contribution by Russia

- tests at CERN in 2017/18
- delivery to mCBM after beamtest at CERN

4x RICH solid-state modules Contribution by Gießen and Wuppertal

- radiator: glas or quartz
- installation in 2019
- 2x 2x3 MAPMT modules (for each solid-state module)

mCBM read-out and data transport

Start version

Contribution by:

detector groups

GSI, WUT, KIT

Frankfurt

N.Herrmann, C.Sturm

mCBM performance benchmark

(Sub)threshold Λ – baryon reconstruction.

Event based MC simulation of 10⁸ events (measurement time: 10 s)

N.Herrmann, C.Sturm

G-PAC, Darmstadt, Sep. 19, 2017

	year	objective	projectile	intensity	extraction	$_{ m shift}$	number of shifts
(1)	2018	developing and commissioning	ions, 1 - 2 AGeV	$10^5 - 10^6 \text{ s}^{-1}$	slow, 10 s	para- sitic	30
(2)	2018	high-rate detector tests	ions, 1 - 2 AGeV	$10^6 - 10^7 \text{ s}^{-1}$	slow, 10 s	para- sitic	21
(3)	2019	approaching full performance	ions, 1 - 2 AGeV	$10^6 - 10^8 \text{ s}^{-1}$	slow, 10 s	para- sitic	30
(4)	2019	running at full performance	Au 1.24 AGeV, Ni 1.93 AGeV	$10^7 - 10^8 \text{ s}^{-1}$	slow, 10 s	main	6

Table 9: Application for SIS18 beam time in the years 2018 and 2019 for mCBM.

Announcement for beam time request 2020 - 2021

year	objective	projectile	intensity	extraction	shift type	number of shifts
2020	preparation of 1 st benchmark run	ions 1 - 2 AGeV, preferably: Au 1.24 AGeV, Ni 1.93 AGeV	$10^7 - 10^8 \text{ s}^{-1}$	slow, 10 s	para- sitic	15
2020	1^{st} benchmark run, Λ reconstruction	Au 1.24 AGeV, Ni 1.93 AGeV	$10^7 - 10^8 \text{ s}^{-1}$	slow, 10 s	main	15
2021	preparation of 2^{nd} benchmark run	ions 1 - 2 AGeV, preferably: Au 1.24 AGeV, Ni 1.93 AGeV	$10^7 - 10^8 \text{ s}^{-1}$	slow, 10 s	para- sitic	15
2021	2^{nd} benchmark run, Λ excitation function	Au, Ni 0.8-1.93 AGeV	$10^8 { m s}^{-1}$	slow, 10 s	main	15

Table 10: Preview for 2020 and 2021 of planned requirements on SIS18 beam time for mCBM.

Summary mCBM@SIS18

The mCBM test-setup ("mini-CBM") will focus on the

- test of final detector prototypes
- free streaming data transport to a computer farm
- online reconstruction and event selection
- offline data analysis

under full load conditions (Au + Au, 10⁷ interactions/s) **Milestones:**

- 10/2017 vacuum chamber for switching magnet ordered
- 10/2017 cave and beam line preparation started
- 03/2018 mFLES cluster in Green IT Cube operational
- 05/2018 ready for installation of detector subsystems
- 06/2018 start commissioning w/o beam
- 09/2018 start commissioning with beam

G-PAC, Darmstadt, Sep. 19, 2017

mDAQ and mFLES 2018 (start version)

mDAQ and mFLES 2019 (SIS100 version)

present design

mCBM detector cave GreenIT Cube mCBM electronic racks ~50 m ~400 m Clock, Synchro-FEB nization, Control Timeslice Building commands and FLES 2 3 FEB CROB FLES compute nodes Status, Command InfiniBand responses, Data FEB PCIe FLES input Data CRI Data node FEB CROB 4 GBT Setup and Control Commands, Commands reslinks 5 Clock, Synchro-nous commands,],busy" status FEB Ethernet CROB FEB ECS TFC

		Device	Function	Location
1	70x	GBTx	data concentrator	Cave, on detector
2	6x	CRI	FPGA board (1x layer only)	DAQ container
3	2x	mFLES input node	Input stage	DAQ container
4	96x	Optical fibers	Data transport	$DAQ \to Green \; IT \; Cube$
5	42x	mFLES compute nodes	Processing stage	Green IT Cube

N.Herrmann, C.Sturm

Present SIS18 facility

Experimental hall at SIS18

mCBM – support infrastructure

Enhancing the rigidity of the existing switching magnet

mCBM Cave - HTD at present

N.Herrmann, C.Sturm

G-PAC, Darmstadt, Sep. 19, 2017

mCBM in preparation ...

