First results on dilepton analysis in HADES.

Semen Lebedev^{1,2}, Marten Becker¹, Claudia Höhne¹ 1) Giessen University 2) LIT JINR

Simulation

- Preliminary results will be shown, set up simulation framework, the work is ongoing.
- Bechelor thesis of Marten Becker
- Main goal: investigate how to make best use of the upgraded RICH, improve dilepton reconstruction and reduce BG.
- New simulation for Ag-Ag at 1650 MeV beam energy.
- > Pluto signal: $\phi \rightarrow e + e embedded$ in each event.
- > Analysis is in the HADES repository:
 - https://subversion.gsi.de/hades/analysis
- Only 30k events due to the technical problems.

Electron Identification and analysis cuts

- MDC sharing is switched on (Improve reconstruction of close pairs).
- Standard Lepton Id (beta > 0.9, RICH matching < 4°)</p>
 - For the current analysis beta >= 0.94
- Momentum Cut (100 MeV/c < P < 1400 MeV/c)</p>
- Opening Angle cut (OA < 9°), both track candidates are removed from combinatorics.

GEANT data input

- Kine objects
- Expected main sources of BG are
 Υ conversions and π⁰ Dalitz decays

 10^{-5}

0

500

1000

2017

1500

Momentum [MeV/c]

2000

Reconstruction Number of track candidates per event

Most of the tracks are rejected by Lepton Id

Number of reconstructed rings per event

Mean number of reconstructed rings per event is 5.1

Ring XY positions

Signal rings and BG rings are located in the same PMT area.

Number of hits per ring Different sources

- Drop for the high theta angle for gamma e+/-
- GEANT PID is taken from ring

Number of hits per ring Shared/Not shared rings

- Use better reconstruction efficiency of the upgraded RICH
- Is it possible to detect double rings from γ conversion?
 - So far number of hits is no good criteria to reject those

Beta distribution

For the standard Lepton Id: $\beta > 0.94$

dEdX distribution

Is it possible to use dEdX form MDC for improvement of Lepton Id?

Momentum * charge

Opening angle Track candidates

After Lepton cut

Almost linear correlation with XY distance

Pair momentum vs. Ring distance

After Lepton cut

Number of track candidates after cuts

- **2,3**: e[±] **5,6**: μ[±] **7,8**:π[±] **14**: p
- Almost no protons after all cuts but still many pions
 - To do: Improve electron ID

Invariant mass

BG pair sources

The biggest contribution comes from misidentified pions.

Opening angle cut discussion

If $OA < 9^{\circ}$ remove both tracks from

Is opening angle cut helpful?

Only in 10% of all pairs both tracks are identified as electron

Do we need to use isLepton for the second candidate?

Summary

- On the basis of this work/results Marten writes his bachelor thesis!
- The initial version of the dielectron analysis was implemented. Many new developments/studies are ongoing.
- The first analysis in the HADES repository:
 - https://subversion.gsi.de/hades/analysis