Implementation of WASA at FRS Plans for Beam Time 2019+

Take R. Saito

GSI Helmholtz Center for Heavy Ion Research, Germany and Helmholtz Institute Mainz, Germany

> Workshop on WASA at GSI/FAIR, November 27th - 28th, 2017, GSI, Germany

Background of the idea

- Kenta Itahashi considerd WASA for FRS
- September 2016:
 - Three proposals for baryon resonances, eta'-nuclei and hypernuclei started to consider WASA at FRS
 - Discussions with the WASA collaboration started

July 2017:

 Meeting with the part of the WASA and Super-FRS Experiment Collaborations in Juelich

August 2017:

 Green light by the WASA collaboration to move the WASA central detector from COSY to GSI

September 2017:

- GSI G-PAC, approval of the two proposals
- November 2017:
 - Approval by the GSI/FAIR Joint Scientific council

UPPSALA UNIVERSITET

Dr. Magnus Wolke

Docent

Department of Physics and Astronomy

Visiting address: Uppsala University Regementsvägen 1 SE-752 37 Uppsala SWEDEN

Postal address: Box 516 SE-751 20 Uppsala SWEDEN

Telephone: +46 18-471 3896

Telefax: +46 18-471 5999

Web page: http://www.physics.uu.se

Email: magnus.wolke@fysast.uu.se August 25, 2017

To whom it may concern

Transfer of the WASA Central Detector to GSI

On the Collaboration Board Meeting on August 25, 2017, the WASA-at-COSY collaboration has decided to agree on a transfer of the WASA Central Detector (excluding the pellet target) to GSI to be used in experiments by the planned "WASA-at-FRS" collaboration for an initial period up to the end of 2022.

The recipient is responsible for reassembly, operation and maintenance of the equipment. The formal transfer should be documented in a memorandum of understanding between the owners of the equipment and the host laboratory GSI.

Uppsala, August 25, 2017

Maples Welle

Dr. Magnus Wolke Spokesperson of the WASA-at-COSY Collaboration

Background of the idea

- Kenta Itahashi considerd WASA for FRS
- September 2016:
 - Three proposals for baryon resonances, eta'-nuclei and hypernuclei started to consider WASA at FRS
 - Discussions with the WASA collaboration started

July 2017:

 Meeting with the part of the WASA and Super-FRS Experiment Collaborations in Juelich

August 2017:

 Green light by the WASA collaboration to move the WASA central detector from COSY to GSI

September 2017:

- GSI G-PAC, approval of the two proposals
- November 2017:
 - Approval by the GSI/FAIR Joint Scientific council

Summary: FRS + WASA

S447: Hypernuclei

 $\,\circ\,$ Puzzles on nnA and ${}^{3}_{\Lambda}{\rm H}$ lifetime

S457: η**'-nuclei**

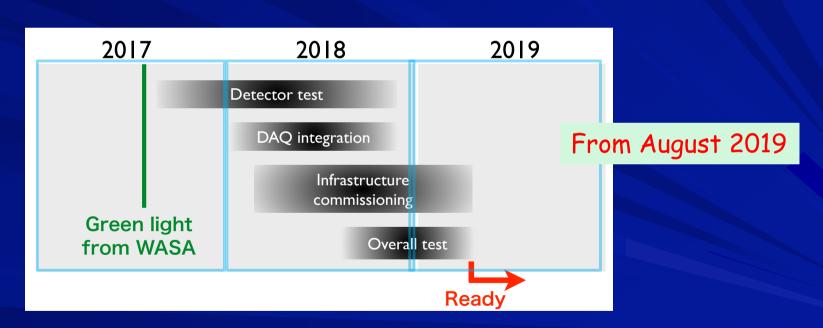
Semi-exclusive measurement

Novel Technique towards Super-FRS at FAIR

S463: Baryon resonances in asymmetric nuclear matter

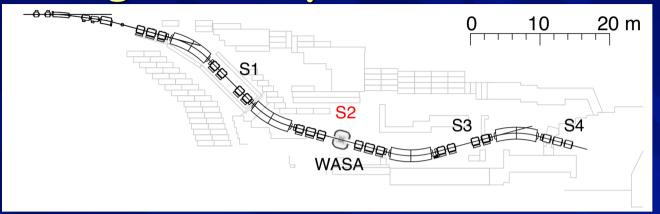
 $^{\circ}$ To separate projectile and target resonances with π^{-} measurements

	Beam	Main shifts	Comn shifts	nissioning (50%)			
S447	⁶ Li at 2 A GeV, 1.7 X 10 ⁷ /s	33	18				
S457	Proton 2.5 GeV, 2.5 X 10 ⁸ /s	18	18	Common if as a campaign in 2019			
S463	¹³⁶ Xe and ¹²⁴ Xe at 0.4, 0.8 and 1.2 A GeV, 10 ⁸ /s	14	18	IN 2019			


GPAC, September 20th 2017

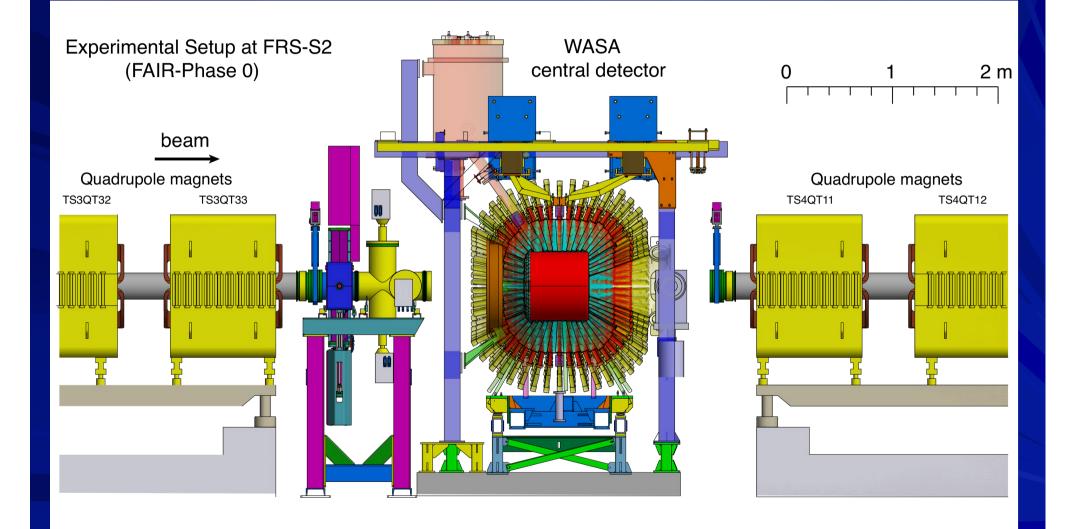
30 S447, S457, S463 FRS + WASA

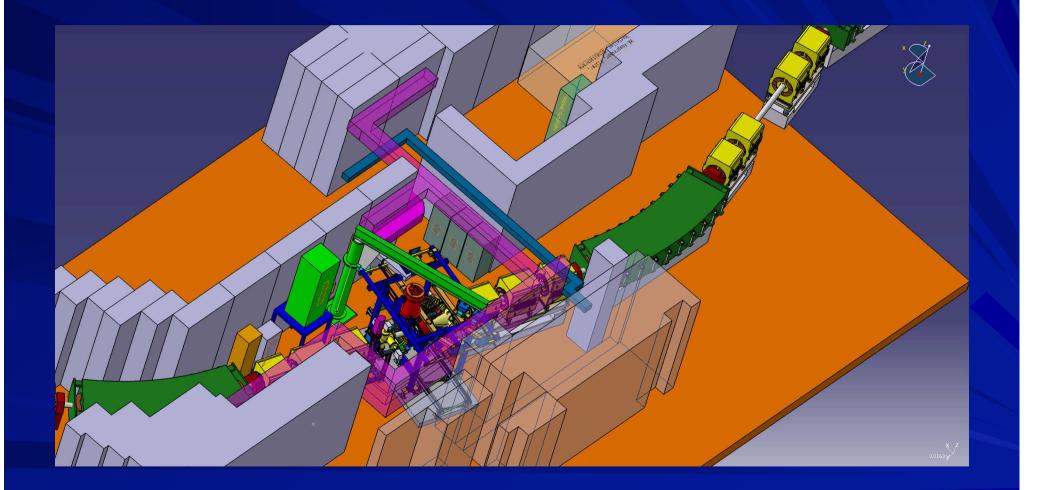
Two approved proposals

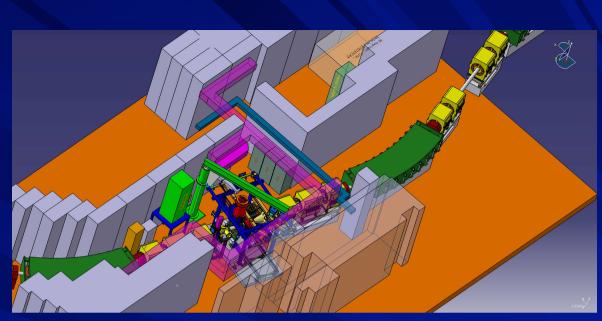

Table 5: Summary of the approved proposals.

Proposal	Grade	Asked	Asked	Approved	Approved	Year
		(physics)	(commissioning)	(physics)	(commissioning)	
S447, hypernuclei	A	33	18	27	18	2019
S457, η' -nucleus	A-	18	18	18	18	2019

- 18 shifts for commissioning
- Break for a few weeks
- Physics shifts


Fragment separator and S2


WASA at S2

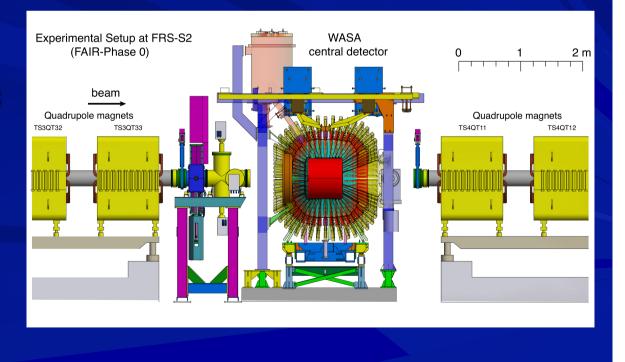


Tour: today at 16:00 – 17:00

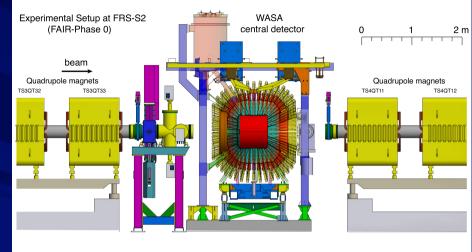
Transportation of WASA CD to GSI

In the first quarter of 2018

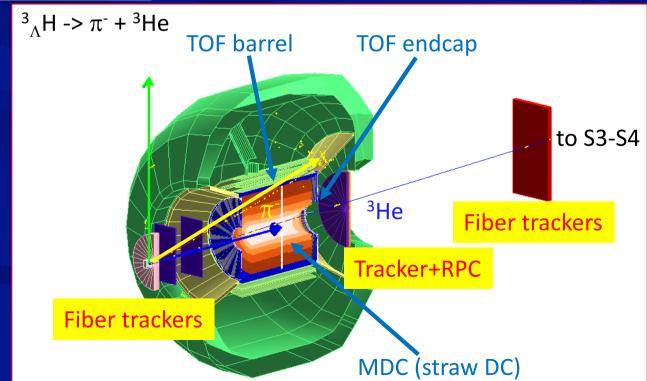
Super conducting magnet and associated cryogenic
 Slow control system


MDC

Plastic barrel and end-caps


CsI

Associated electronics


Drying plant for CsI

Setup for hypernuclei

1.8 T if possible

Superconducting magnet and cryogenics First, installed on the roof of S2

Superconducting magnet and cryogenics

First, installed on the roof of S2

Test of the magnet system asap

- 1.8 T operation possible or not
- Important for the hypernuclear proposal
- Revision of Monte Carlo simulations

We need more manpower

Laboratory spaces at GSI

For detector tests

- MDC
- Plastics
- Fiber detectors

MDC test

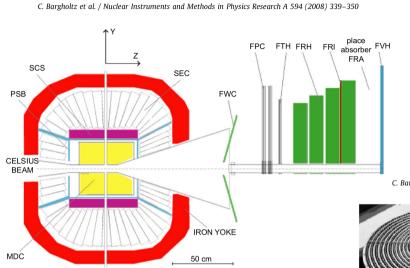


Fig. 2. Cross-section of the WASA detector. The central detector built around the interaction point (detector are visible on the right-hand side. The individual components are described in the text.

C. Bargholtz et al. / Nuclear Instruments and Methods in Physics Research A 594 (2008) 339-350

341

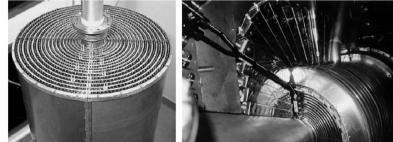


Fig. 10. (Left) The fully assembled MDC inside the Al-Be cylinder. (Right) The MDC surrounded by PSB elements and the SCS cryostat.

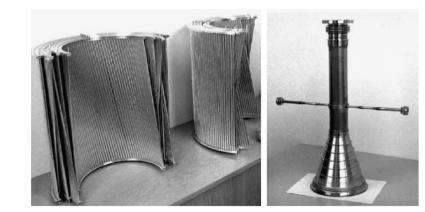
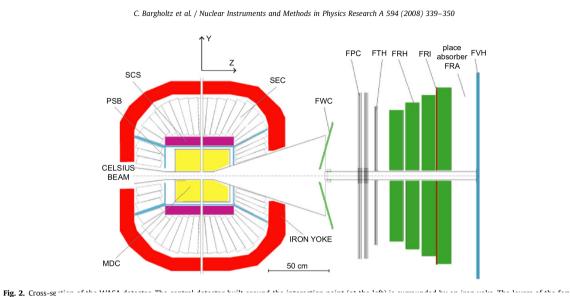


Fig. 11. (Left) Drift tubes secured in the end-plates. Note the stereo layers interleaved with parallel layers. (Right) Be beam pipe with pellet pipe crossing and forward cone.

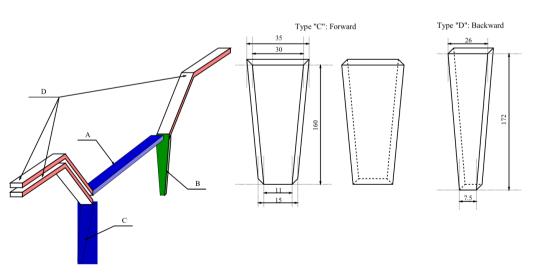
345

MDC test


- Testing in the lab with cosmic-rays
- Identify dead channels

Implement dead channels in MC simulation
 Revision of the simulations with the realisitic configurations

One postdoc + one PhD student


Upgrading the plastic detectors

341

C. Bargholtz et al. / Nuclear Instruments and Methods in Physics Research A 594 (2008) 339-350

Fig. 15. (Left) Layout of one section of the PSB detector. A denotes the rectangular counters of the barrel wall and B and C are trapezoidal elements in the forward and in the backward caps respectively. D are bent light guides. (Middle) Two shapes of the trapezoidal forward elements with dimensions marked in mm. (Right) Shape and dimensions in mm of the trapezoidal backward element.

347

Upgrading the plastic detectors

Plastic barrel

- Readout with both sides
- With SiPMs
- Very mandatory for the hypernuclear experiment
 - Position information
 - Better time resolution (100 ps)

One postdoc + one student

SiPMs: 10-20 k Euro Electronics: 22 k Euro

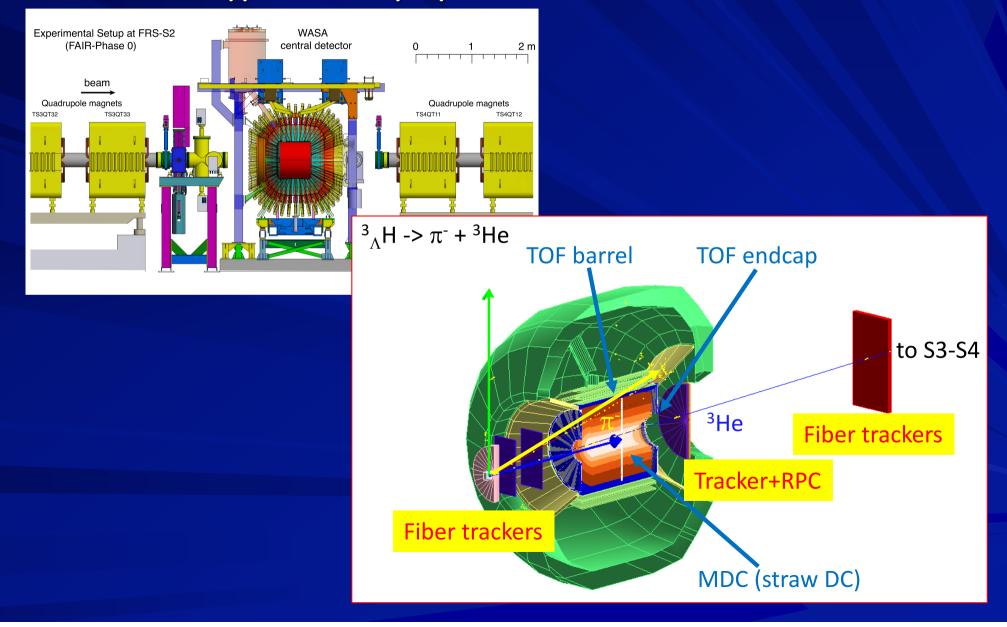
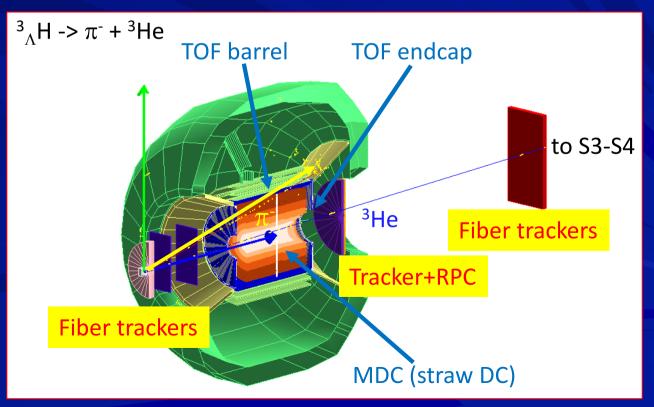


Fig. 15. (Left) Layout of one section of the PSB detector. A denotes the rectangular counters of the barrel wall and B and C are trapezoidal elements in the forward and in the backward caps respectively. D are bent light guides. (Middle) Two shapes of the trapezoidal forward elements with dimensions marked in mm. (Right) Shape and dimensions in mm of the trapezoidal backward element.

347

A little modification


For the hypernuclear proposal

Fiber detectors for hypernuclei

- Fibers from Catania?
- HypHI fibers?
- Readout by SiPMs
- New readout electronics

One postdoc + two PhD students

Online/Offline software development

Based on the WASA and HypHI analyses package
 Coupling to the FRS analyses program

Analyze simulated and real data
 Fast online/nearline analyses

Improvement of the Monte Carlo simulations

A few postdocs and a few PhD students

Electronics

- WASA CD
 Fiber for hypernuclei
 FRS detectors
 With MBS
- The WASA electronics system coipled to the MBS system
 Not trivial
- New GSI readout electronics for WASA with MBS

Table 6: Summary of the possibilities with newly developed electronics at GSI.

Detector	Readout channels	Required Readout	Electronics	Number of cards	Cost (Euro)
MDC	1738	TDC	PADI+ClkTDC	15	36 k
Plastic	196	TDC + charge	PADI+TAMEX (11ps)	15	22 k
Fiber	3000	TDC+charge	PADI+ClkTDC	25	66 k
Total					124 k

- Budget necessary
- Production from 2017 (after the allocation of budgets)

Funding

Local budget at GSI

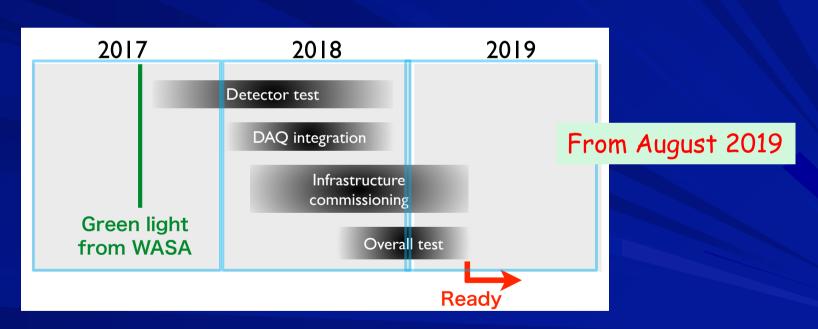
- 2016: ~ 44 k Euro
- 2017: Asking more than 100 k Euro
 - Transportation cost
 - Holding structures
 - For laboratories
 - Manpower
- Very strong statement by the GSI/FAIR Joint Scientific Council
 - "Excellent project with no cost" can be supported

Funding applications

Table 7: Summary of the on-going funding applications.

Funding name	Country	Applicants	Total Budget	man power	duration	Results
			(Euro)		size (years)	expected
ERC Advanced grant	EU	T.R. Saito	2.5 M	7	5	April 2018
JSPS Kiban B	Japan	K. Itahashi	150 k		5	Spring 2018
1000 talents program	China	T.R. Saito	$0.7 \mathrm{M} + \mathrm{much more}$	a few	5	Soon
JSPS Tokutei Ryoiki	Japan	T.R. Saito		2	5	Summer 2018

Additional application will be made by T.R. Saito


Most of them are from the mid of 2018

Short of manpower

Two approved proposals

Table 5: Summary of the approved proposals.

Proposal	Grade	Asked	Asked	Approved	Approved	Year
		(physics)	(commissioning)	(physics)	(commissioning)	
S447, hypernuclei	A	33	18	27	18	2019
S457, η' -nucleus	A-	18	18	18	18	2019

- We will make ourselves ready in 2019
- In 2019, only hypernuclear experiment, most probably
- 2020???

The Wide Angle Shower Apparatus (WASA) at GSI and FAIR

"WASA-at-GSI/FAIR"

Author list and affiliations, to be filled.

Current authors are Karlheinz Behr, Jose Benlliure, Kenta Itahashi, Take R. Saito, Susan Schadmand,

Christoph Scheidenberger, Version, November 26th, 2017

Abstract

To be filled.

Contents

6 Summary

1	Introduction	2
2	The fragment separator FRS 2.1 Design and technical layout 2.2 FRS beam detectors, in-flight separation and identification of relativistic projectiles 2.3 Simulations of the FRS operation	2 3 4 4
3	The WASA central detector 3.1 solenoid 3.2 tracking detector 3.3 thin plastic scintillators 3.4 electromagnetic calorimeter 3.5 particle identification	4 5 7 7 7
4	4.1 Hypernuclear spectroscopy (S447) 4.2 η '-mesic nuclei (S457) 4.2.1 Physics behind the experiment 4.2.2 η -PRiME experimental program 4.2.3 Theoretical calculations and spectra 4.2.4 Semi-exclusive measurement of (p, dp) reaction at FRS 4.2.5 Summary	8 15 15 16 18 20 20
5	5.1 Approved proposals 5.2 Installation of the WASA central detector at S2 of FRS 5.3 Detector upgrade 5.4 Electronics 5.5 Cost estimate	20 22 22 22 22 23 23

 $\mathbf{23}$

Meeting for technical issues:

Nov. 28th (tomorrow), 15:30 (after all sessions)