

Theory of Light-Meson Decays

Bastian Kubis

Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) Bethe Center for Theoretical Physics Universität Bonn, Germany

> Workshop WASA-at-GSI/FAIR Darmstadt, 28/11/2017

Hadronic and radiative decays of light mesons

Chiral perturbation theory... and its limitations

• $\eta \rightarrow 3\pi$: quark masses and Dalitz plot

Dispersion relations and final-state interactions

- pion form factor(s) and $\eta^{(\prime)} \rightarrow \pi^+ \pi^- \gamma$
- meson transition form factors: $\eta^{(\prime)} \rightarrow e^+ e^- \gamma$

Dispersion relations for three-body decays

- $\eta' \to \eta \pi \pi$
- $\omega/\phi \to 3\pi$

Summary / Outlook

Light mesons without modeling

Chiral perturbation theory (ChPT) ...

- Effective field theory: simultaneous expansion in quark masses + small momenta
 - > systematically improvable
 - ▷ well-established link to QCD: all symmetry constraints
 - interrelates many different observables

Light mesons without modeling

Chiral perturbation theory (ChPT) ...

- Effective field theory: simultaneous expansion in quark masses + small momenta
 - > systematically improvable
 - ▷ well-established link to QCD: all symmetry constraints
 - interrelates many different observables

... and its limitations

- strong final-state interactions render corrections large
- physics of light pseudoscalars (π , K, η) only
 - $\triangleright~$ (energy) range limited by resonances: $\sigma(500),~\rho(770)\ldots$
 - unitarity is only perturbatively fulfilled
 - ▷ not applicable to decays of (e.g.) vector mesons at all
- \longrightarrow find effective ways to resum rescattering / restore unitarity to apply ChPT where it works best!

Quark masses and $\eta ightarrow 3\pi$ decays

• $\eta \rightarrow 3\pi$ isospin violating; two sources in the Standard Model:

 $m_u \neq m_d$ $e^2 \neq 0$

electromagnetic contribution small
 Sutherland 1967
 Baur, Kambor, Wyler 1996; Ditsche, BK, Meißner 2009

$$\eta \to \pi^{+} \pi^{-} \pi^{0} : \quad \mathcal{A}_{c}^{\mathsf{LO}}(s, t, u) = \frac{B(m_{u} - m_{d})}{3\sqrt{3}F_{\pi}^{2}} \left\{ 1 + \frac{3(s - s_{0})}{M_{\eta}^{2} - M_{\pi}^{2}} \right\}$$
$$s = (p_{\pi^{+}} + p_{\pi^{-}})^{2} , \ 3s_{0} \doteq M_{\eta}^{2} + 3M_{\pi}^{2}$$

• $\Delta I = 1$ relation between charged and neutral decay amplitudes:

$$\eta \to 3\pi^0$$
: $\mathcal{A}_n(s,t,u) = \mathcal{A}_c(s,t,u) + \mathcal{A}_c(t,u,s) + \mathcal{A}_c(u,s,t)$

Quark masses and $\eta ightarrow 3\pi$ decays

• $\eta \rightarrow 3\pi$ isospin violating; two sources in the Standard Model:

 $m_u \neq m_d$ $e^2 \neq 0$

electromagnetic contribution small
 Sutherland 1967
 Baur, Kambor, Wyler 1996; Ditsche, BK, Meißner 2009

$$\eta \to \pi^{+} \pi^{-} \pi^{0} : \quad \mathcal{A}_{c}^{\mathsf{LO}}(s, t, u) = \frac{B(m_{u} - m_{d})}{3\sqrt{3}F_{\pi}^{2}} \left\{ 1 + \frac{3(s - s_{0})}{M_{\eta}^{2} - M_{\pi}^{2}} \right\}$$
$$s = (p_{\pi^{+}} + p_{\pi^{-}})^{2} , \ 3s_{0} \doteq M_{\eta}^{2} + 3M_{\pi}^{2}$$

• $\Delta I = 1$ relation between charged and neutral decay amplitudes:

$$\eta \to 3\pi^0$$
: $\mathcal{A}_n(s,t,u) = \mathcal{A}_c(s,t,u) + \mathcal{A}_c(t,u,s) + \mathcal{A}_c(u,s,t)$

• relevance: (potentially) clean access to $m_u - m_d$ *but*: large higher-order / final-state interactions \rightarrow require good theoretical Dalitz-plot description

to extract normalisation

Kampf et al. 2011, P. Guo et al. 2015, 2016, Colangelo et al. 2016...

$\eta ightarrow 3\pi^0$ Dalitz plot parameter lpha $|\mathcal{A}_n(x,y)|^2 = |\mathcal{N}_n|^2 \{ 1 + 2\alpha z + \ldots \} \quad z \propto (s-s_0)^2 + (t-s_0)^2 + (u-s_0)^2$ $10^3 \times \alpha$ ChPT $O(p^4)$ +13ChPT $O(p^6)$ $+13 \pm 32$ Dispersive (KWW) -7...-14 $O(p^4) + \text{NREFT}$ (full) -25 ± 5 (resums rescatt. Crystal Ball@BNL to 2 loops) Crystal Barrel@LEAR Schneider, BK, **GAMS-2000** Ditsche 2011 **KLOE** MAMI-B MAMI-C PDG average: **SND** -31.7 ± 1.6 WASA@CELSIUS

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

WASA@COSY

0.06

0.08

0.10

analyticity (\simeq causality)

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z-s}$$

analyticity (\simeq causality)

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z-s}$$

analyticity (\simeq causality)

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z-s}$$

analyticity (\simeq causality)

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z-s}$$

analyticity (\simeq causality)

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z-s}$$
$$\longrightarrow \frac{1}{2\pi i} \int_{4M_{\pi}^2}^{\infty} \frac{\operatorname{disc} T(z)dz}{z-s}$$
$$= \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{\operatorname{Im} T(z)dz}{z-s}$$

$$\frac{\operatorname{disc} T(s)}{2i} = \operatorname{Im} T(s) = \frac{2q_{\pi}}{\sqrt{s}}\theta(s - 4M_{\pi}^2)|T(s)|^2$$

• disc $T(s) = 2i \operatorname{Im} T(s)$ given by unitarity (\simeq prob. conservation):

inelastic intermediate states ($K\bar{K}$, 4π) suppressed at low energies \longrightarrow will be neglected in the following

Dispersion relation for the pion form factor

• final-state interactions of two particles: form factor

 $\frac{1}{2i}\operatorname{disc} F_{I}(s) = \operatorname{Im} F_{I}(s) = F_{I}(s) \times \theta(s - 4M_{\pi}^{2}) \times \sin \delta_{I}(s) e^{-i\delta_{I}(s)}$

 \rightarrow final-state theorem: phase of $F_I(s)$ is just $\delta_I(s)$ Watson 1954

Dispersion relation for the pion form factor

• final-state interactions of two particles: form factor

 $\frac{1}{2i}\operatorname{disc} F_{I}(s) = \operatorname{Im} F_{I}(s) = F_{I}(s) \times \theta(s - 4M_{\pi}^{2}) \times \sin \delta_{I}(s) e^{-i\delta_{I}(s)}$

÷

 \longrightarrow final-state theorem: phase of $F_I(s)$ is just $\delta_I(s)$ Watson 1954

• solution to this homogeneous integral equation known:

$$F_I(s) = P_I(s)\Omega_I(s) , \quad \Omega_I(s) = \exp\left\{\frac{s}{\pi}\int_{4M_\pi^2}^\infty ds' \frac{\delta_I(s')}{s'(s'-s)}\right\}$$

 $P_I(s)$ polynomial, $\Omega_I(s)$ Omnès function

Omnès 1958

• constrain polynomial using symmetries / chiral perturbation theory (normalisation/derivatives at s = 0)

Pion vector form factor

• pion vector form factor clearly non-perturbative: ρ resonance

Final-state universality: $\eta,~\eta' ightarrow \pi^+\pi^-\gamma$

 η^(') → π⁺π⁻γ driven by the chiral anomaly, π⁺π⁻ in P-wave → final-state interactions the same as for vector form factor
 ansatz: A^{η^(')}_{ππγ} = A × P(t) × F^V_π(t), P(t) = 1 + α^(')t

Final-state universality: $\eta,~\eta' ightarrow \pi^+\pi^-\gamma$

$\eta,\,\eta' o\pi^+\pi^-\gamma$ with left-hand cuts

• include a_2 : leading resonance in $\pi \eta^{(\prime)}$

BK, Plenter 2015

$\eta,\,\eta' ightarrow\pi^+\pi^-\gamma$ with left-hand cuts

• include a_2 : leading resonance in $\pi \eta^{(\prime)}$

 π^+

$\eta,\,\eta' ightarrow\pi^+\pi^-\gamma$ with left-hand cuts

• include a_2 : leading resonance in $\pi \eta^{(\prime)}$

 π^+

$\eta,\,\eta' ightarrow\pi^+\pi^-\gamma$ with left-hand cuts

Pseudoscalar transition form factors and $(g-2)_{\mu}$

• largest individual contribution to hadronic light-by-light scattering: pseudoscalar pole terms singly / doubly virtual form factors $F_{P\gamma\gamma^*}(q^2, 0)$ and $F_{P\gamma^*\gamma^*}(q_1^2, q_2^2)$

Pseudoscalar transition form factors and $(g-2)_{\mu}$

• largest individual contribution to hadronic light-by-light scattering: pseudoscalar pole terms singly / doubly virtual form factors $F_{P\gamma\gamma^*}(q^2, 0)$ and $F_{P\gamma^*\gamma^*}(q_1^2, q_2^2)$

• normalisation fixed by Wess–Zumino–Witten anomaly, e.g.:

$$F_{\pi^0\gamma\gamma}(0,0) = \frac{e^2}{4\pi^2 F_\pi}$$

 F_{π} : pion decay constant \longrightarrow measured at 1.5% level PrimEx 2011

Pseudoscalar transition form factors and $(g-2)_{\mu}$

• largest individual contribution to hadronic light-by-light scattering: pseudoscalar pole terms singly / doubly virtual form factors $F_{P\gamma\gamma^*}(q^2, 0)$ and $F_{P\gamma^*\gamma^*}(q_1^2, q_2^2)$

• normalisation fixed by Wess–Zumino–Witten anomaly, e.g.:

$$F_{\pi^0\gamma\gamma}(0,0) = \frac{e^2}{4\pi^2 F_\pi}$$

 F_{π} : pion decay constant \longrightarrow measured at 1.5% level PrimEx 2011

- q_i^2 -dependence: often modelled by vector-meson dominance \longrightarrow what can we learn from analyticity and unitarity constraints?
 - \rightarrow what experimental input sharpens these constraints?

Transition form factor $\eta ightarrow \gamma^* \gamma$

• another disp. rel.: $\eta \to \pi^+\pi^-\gamma + e^+e^- \to \pi^+\pi^- \longrightarrow \eta \to e^+e^-\gamma$

Transition form factor $\eta ightarrow \gamma^* \gamma$

• another disp. rel.: $\eta \to \pi^+\pi^-\gamma + e^+e^- \to \pi^+\pi^- \longrightarrow \eta \to e^+e^-\gamma$

$$\bar{F}_{\eta\gamma^*\gamma}(q^2, 0) = 1 + \frac{\kappa_\eta q^2}{96\pi^2 F_\pi^2} \int_{4M_\pi^2}^{\infty} ds \sigma(s)^3 P(s) \frac{|F_\pi^V(s)|^2}{s - q^2} + \Delta F_{\eta\gamma^*\gamma}^{I=0}(q^2, 0) \ [\longrightarrow \mathsf{VMD}]$$

Hanhart et al. 2013

 \rightarrow huge statistical advantage of using hadronic input for $\eta \rightarrow \pi^+\pi^-\gamma$ over direct measurement of $\eta \rightarrow e^+e^-\gamma$ (rate suppressed by α^2_{OFD})

figure courtesy of C. Hanhart data: NA60 2011, A2 2014

Prediction for η' transition form factor

- isovector: combine high-precision data on $\eta' \rightarrow \pi^+ \pi^- \gamma$ and $e^+ e^- \rightarrow \pi^+ \pi^-$
- isoscalar: VMD, couplings fixed from

$$\eta'
ightarrow \omega \gamma$$
 and $\phi
ightarrow \eta' \gamma$

 π

Dispersion relations for three-body decays: $\eta' ightarrow \eta \pi \pi$

 $\mathcal{A}(s,t,u) = \mathcal{A}_0(s) + \mathcal{A}_1(t) + \mathcal{A}_1(u),$

• solve Khuri–Treiman equations Isken, BK, Schneider, Stoffer 2017 input: S-wave phase shifts $\delta_0 \equiv \delta_{\pi\pi}$ and $\delta_1 \equiv \delta_{\pi\eta}$

$$\mathcal{A}_0(s) = \Omega_0(s) \left\{ \alpha + \beta s + \frac{s^2}{\pi} \int_{s_{\text{thr}}}^\infty \frac{dx}{x^2} \frac{\hat{\mathcal{A}}_0(x) \sin \delta_0(x)}{|\Omega_0(x)|(x-s)|} \right\}$$
$$\mathcal{A}_1(t) = \Omega_1(t) \left\{ \gamma t + \frac{t^2}{\pi} \int_{t_{\text{thr}}}^\infty \frac{dx}{x^2} \frac{\hat{\mathcal{A}}_1(x) \sin \delta_1(x)}{|\Omega_1(x)|(x-t)|} \right\}$$

• $\hat{\mathcal{A}}_{0/1}$: partial-wave projections of crossed-channel amplitudes:

$\eta^\prime o \eta \pi \pi$ Dalitz plot

• 3 or 4 subtraction constants:

Isken, BK, Schneider, Stoffer 2017

BESIII 2010

more predictive vs. less dependence on phase shift uncertainty

one-dimensional projections vs. data:

$\eta^\prime o \eta \pi \pi$ Dalitz plot

• 3 or 4 subtraction constants:

Isken, BK, Schneider, Stoffer 2017

BESIII 2010

more predictive vs. less dependence on phase shift uncertainty

one-dimensional projections vs. data:

$\eta^\prime o \eta \pi \pi$ Dalitz plot

• 3 or 4 subtraction constants:

Isken, BK, Schneider, Stoffer 2017

more predictive vs. less dependence on phase shift uncertainty

one-dimensional projections vs. data:
 BESIII 2010

- Dalitz plot parameters well reproduced, higher ones predicted
- analysis tool for new high-prec. Dalitz plots A2@MAMI, BESIII 2017
- ingredient for forthcoming $\eta' \rightarrow 3\pi$ analysis

BESIII 2016

Dispersion relations for three-body decays: vector mesons

 $\omega/\phi
ightarrow 3\pi$

- beyond ChPT: copious efforts to develop EFT for vector mesons Bijnens et al.; Bruns, Meißner; Lutz, Leupold; Gegelia et al.; Kampf et al....
- vector mesons highly important for (virtual) photon processes

Dispersion relations for three-body decays: vector mesons

 $\omega/\phi
ightarrow 3\pi$

- beyond ChPT: copious efforts to develop EFT for vector mesons Bijnens et al.; Bruns, Meißner; Lutz, Leupold; Gegelia et al.; Kampf et al....
- vector mesons highly important for (virtual) photon processes
- $\omega/\phi \rightarrow 3\pi$ analyzed in terms of KLOE 2003, CMD-2 2006 sum of 3 Breit–Wigners (ρ^+ , ρ^- , ρ^0)
 - + constant background term

Dispersion relations for three-body decays: vector mesons

 $\omega/\phi
ightarrow 3\pi$

- beyond ChPT: copious efforts to develop EFT for vector mesons Bijnens et al.; Bruns, Meißner; Lutz, Leupold; Gegelia et al.; Kampf et al....
- vector mesons highly important for (virtual) photon processes
- $\omega/\phi \rightarrow 3\pi$ analyzed in terms of KLOE 2003, CMD-2 2006 sum of 3 Breit–Wigners (ρ^+ , ρ^- , ρ^0)

+ constant background term

Problem:

- \rightarrow unitarity fixes Im/Re parts
- \longrightarrow adding a contact term destroys this relation
- \rightarrow reconcile data with dispersion relations? Niecknig, BK, Schneider 2012

$\omega/\phi ightarrow 3\pi$ Dalitz plots

- only one subtraction constant $a \longrightarrow$ fix to partial width
- normalised Dalitz plot in $y \propto s s_0$, $x \propto t u$:

- ω Dalitz plot is relatively smooth
- ϕ Dalitz plot clearly shows ρ resonance bands

Niecknig, BK, Schneider 2012

KLOE Dalitz plot: $2 \cdot 10^6$ events, 1834 bins Niecknig, BK, Schneider 2012

 $\hat{\mathcal{F}} = 0$ once-subtracted twice-subtracted χ^2/ndof 1.71...2.06 1.17...1.50 1.02...1.03

- perfect fit respecting analyticity and unitarity possible
- contact term emulates neglected rescattering effects
- no need for "background" inseparable from "resonance"

• $\omega \rightarrow 3\pi$ Dalitz plot smooth \longrightarrow polynomial parameterisation

 $|\mathcal{F}_{\rm pol}(z,\phi)|^2 = |\mathcal{N}|^2 \left\{ 1 + 2\alpha z + 2\beta z^{3/2} \sin 3\phi + 2\gamma z^2 + 2\delta z^{5/2} \sin 3\phi + \mathcal{O}(z^3) \right\}$

 \rightarrow first experimental measurement:

 $\alpha = (147 \pm 36) \times 10^{-3}$ WASA-at-COSY 2016 β not yet significant

Summary / Outlook

Dispersion relations for meson decays

- based on unitarity, analyticity, crossing symmetry
- rigorous treatment of two- and three-hadron final states
- matching to ChPT where it works best:

(sub)threshold, normalisation, slopes...

• relates hadronic to radiative decays / transition form factors not covered here: $\omega/\phi \rightarrow 3\pi \longrightarrow \omega/\phi \rightarrow \pi^0 \ell^+ \ell^-$

Schneider, BK, Niecknig 2012

Where do we go from here?

- radiative corrections in $\eta\to 3\pi$ via matching to EFTs
 - \rightarrow improved light quark masses Colangelo et al.
- $\eta' \to 3\pi$ from $\eta' \to \eta \pi \pi + \eta \pi \to \pi \pi$ Isken et al.
- comprehensive π^0 , η , η' transition form factor program: doubly virtual $\longrightarrow (g-2)_{\mu}$ theory initiative Bonn, Jülich...

Transition form factor $\omega(\phi) ightarrow \pi^0 \ell^+ \ell^-$

• ω transition form factor related to

pion vector form factor $\times \omega \rightarrow 3\pi$ decay amplitude

• form factor normalization yields rate $\Gamma(\omega \to \pi^0 \gamma)$

(2nd most important ω decay channel)

 \longrightarrow works at 95% accuracy

Schneider, BK, Niecknig 2012

Numerical results: $\omega ightarrow \pi^0 \mu^+ \mu^-$

NA60 data potentially in conflict with unitarity bounds
 Ananthanarayan, Caprini, BK 2014, Caprini 2015

Numerical results: $\phi ightarrow \pi^0 \ell^+ \ell^-$

- measurement in ρ peak region
 would be extremely helpful
- $\phi \rightarrow 3\pi$ partial-wave amplitude backed up by experiment

Niecknig, BK, Schneider 2012

$\eta ightarrow 3\pi$: final-state interactions

- strong final-state interactions among pions
 - ▷ tree level: $\Gamma(\eta \to \pi^+ \pi^- \pi^0) = 66 \text{ eV}$ Cronin 1967
 - ▷ one-loop: $\Gamma(\eta \rightarrow \pi^+\pi^-\pi^0) = 160 \pm 50 \text{ eV}$ Gasser, Leutwyler 1985
 - ▷ experimental: $\Gamma(\eta \rightarrow \pi^+ \pi^- \pi^0) = 296 \pm 16 \text{ eV}$ PDG
- major source: large S-wave final-state rescattering \longrightarrow use dispersion relations to resum those beyond loop expansion
- similar formalism to $\omega/\phi \rightarrow 3\pi$, but more partial waves

(S waves I = 0, 2, P wave I = 1)

match subtraction constants to ChPT and/or to data

$\eta ightarrow 3\pi$: final-state interactions

- strong final-state interactions among pions
 - ▷ tree level: $\Gamma(\eta \to \pi^+ \pi^- \pi^0) = 66 \text{ eV}$ Cronin 1967
 - ▷ one-loop: $\Gamma(\eta \rightarrow \pi^+\pi^-\pi^0) = 160 \pm 50 \text{ eV}$ Gasser, Leutwyler 1985
 - ▷ experimental: $\Gamma(\eta \rightarrow \pi^+ \pi^- \pi^0) = 296 \pm 16 \text{ eV}$ PDG
- major source: large S-wave final-state rescattering \longrightarrow use dispersion relations to resum those beyond loop expansion
- similar formalism to $\omega/\phi \rightarrow 3\pi$, but more partial waves

(S waves I = 0, 2, P wave I = 1)

match subtraction constants to ChPT and/or to data

• on the other hand: consider $r = \frac{\Gamma(\eta \to 3\pi^0)}{\Gamma(\eta \to \pi^+\pi^-\pi^0)}$

ChPT: $r_{\text{tree}} = 1.54$, $r_{1-\text{loop}} = 1.46$, $r_{2-\text{loop}} = 1.47$ PDG: $r = 1.432 \pm 0.026$ (fit), $r = 1.48 \pm 0.05$ (average)

 \longrightarrow agrees rather well

Bijnens, Ghorbani 2007

Decay amplitude can be decomposed into single-variable functions

$$\mathcal{M}(s,t,u) = i\epsilon_{\mu\nu\alpha\beta}n^{\mu}p^{\nu}_{\pi^{+}}p^{\alpha}_{\pi^{-}}p^{\beta}_{\pi^{0}}\left\{\mathcal{F}(s) + \mathcal{F}(t) + \mathcal{F}(u)\right\}$$

Unitarity relation for $\mathcal{F}(s)$:

disc
$$\mathcal{F}(s) = 2i\{\underbrace{\mathcal{F}(s)}_{i} + \underbrace{\hat{\mathcal{F}}(s)}_{i}\} \times \theta(s - 4M_{\pi}^2) \times \sin \delta_1^1(s) e^{-i\delta_1^1(s)}$$

right-hand cut left-hand cut

Unitarity relation for $\mathcal{F}(s)$:

disc $\mathcal{F}(s) = 2i \{ \underbrace{\mathcal{F}(s)}_{\mathcal{F}(s)} + \underbrace{\hat{\mathcal{F}}(s)}_{\mathcal{F}(s)} \} \times \theta(s - 4M_{\pi}^2) \times \sin \delta_1^1(s) e^{-i\delta_1^1(s)}$

right-hand cut left-hand cut

Unitarity relation for $\mathcal{F}(s)$:

disc
$$\mathcal{F}(s) = 2i\{\underbrace{\mathcal{F}(s)}_{\text{right-hand cut}}\} \times \theta(s - 4M_{\pi}^2) \times \sin \delta_1^1(s) e^{-i\delta_1^1(s)}$$

• right-hand cut only $\longrightarrow Omnès problem$

$$\mathcal{F}(s) = a \,\Omega(s) \,, \qquad \Omega(s) = \exp\left\{\frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds'}{s'} \frac{\delta_1^1(s')}{s'-s-i\epsilon}\right\}$$

 \longrightarrow amplitude given in terms of pion vector form factor

disc
$$\mathcal{F}(s) = 2i\{\underbrace{\mathcal{F}(s)}_{\text{right-hand cut}} + \underbrace{\widehat{\mathcal{F}}(s)}_{\text{left-hand cut}}\} \times \theta(s - 4M_{\pi}^2) \times \sin \delta_1^1(s) e^{-i\delta_1^1(s)}$$

• inhomogeneities $\hat{\mathcal{F}}(s)$: angular averages over the $\mathcal{F}(t)$, $\mathcal{F}(u)$

$$\mathcal{F}(s) = a \,\Omega(s) \left\{ 1 + \frac{s}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s')}{|\Omega(s')| (s' - s - i\epsilon)} \right\}$$

$$\hat{\mathcal{F}}(s) = \frac{3}{2} \int_{-1}^{1} dz \, (1-z^2) \mathcal{F}(t(s,z))$$

Anisovich, Leutwyler 1998

• inhomogeneities $\hat{\mathcal{F}}(s)$: angular averages over the $\mathcal{F}(t)$, $\mathcal{F}(u)$

$$\mathcal{F}(s) = a \,\Omega(s) \left\{ 1 + \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s')}{|\Omega(s')|(s'-s-i\epsilon)} \right\}$$
$$\hat{\mathcal{F}}(s) = \frac{3}{2} \int_{-1}^1 dz \,(1-z^2) \mathcal{F}(t(s,z)) \qquad \text{Anisovich, Leutwyler 1998}$$

 \rightarrow crossed-channel scattering between s-, t-, and u-channel

New data on $\eta'
ightarrow \pi^+\pi^-\gamma$

BESIII preliminary, Fang 2015

New data on $\eta'
ightarrow \pi^+\pi^-\gamma$

