

a little bit of history	Wide Angle Shower Apparatus
-------------------------	-----------------------------

from: Hans Calen, TSL symposium, Nov 2015

- Mar 1984 Letter of intent for a research program on elementary particle physics experiments at CELSIUS
- Oct 1987 Wide Angle Shower Apparatus Proposal for a detector at CELSIUS from the WASA collaboration
- Jun 1992 WASA/PROMICE experiments - Apr 1998

Wid	le Angle Shower Apparatus a little bit of history
Mar 1984	Letter of intent for a research program on elementary particle physics experiments at CELSIUS
Oct 1987	Wide Angle Shower Apparatus Proposal for a detector at CELSIUS from the WASA collaboration
Jun 1992 - Apr 1998	WASA/PROMICE experiments
1998	CELSIUS/WASA commissioning proposal
Jun 1999 - Jun 2005	CELSIUS/WASA experiments
Oct 2004	WASA-at-COSY proposal
Jun 2005 - Aug 2006	
Apr 2007 - Jun 2014	WASA-at-COSY experiments

WASA to COSY

Picture Gallery

CELSIUS, June 2005

CELSIUS, Aug 29, 2005

CELSIUS, October 2005

COSY, October 2005

COSY, March 2006

COSY, October 2005

COSY, Jun 12, 2006

COSY, Aug 8, 2006 COSY

Wid	le Angle Shower Apparatus a little bit of history	from: Hans Calen, TSL symposium, Nov 2015
Mar 1984	Letter of intent for a research program	on elementary particle physics experiments at CELSIUS
Oct 1987	Wide Angle Shower Apparatus Propo	sal for a detector at CELSIUS from the WASA collaboration
Jun 1992 - Apr 1998	WASA/PROMICE experiments	
1998	CELSIUS/WASA commissioning pro	posal
Jun 1999 - Jun 2005	CELSIUS/WASA experiments	
Oct 2004	WASA-at-COSY proposal	
Jun 2005 - Aug 2006	Move of WASA from	
Apr 2007 - Jun 2014	WASA-at-COSY experiments	

ABC — first observation

Lawrence Radiation Laboratory 184 inch cyclotron (p), d₂ gas target

at the time of PRL 5 (1960):

explanations [...] are the existence of a new invariant phase space assumed. [...] Plausible neutral particle or a resonant π - π system." "The data are inconsistent with the relativistically

> (Abashian, Booth, Crowe) A.Abashian, N.E. Booth, K.M. Crowe, Phys. Rev. Lett. 5 (1960) 258

$pd \rightarrow {}^{3}HeX, \, \theta_{He} = 11.5^{\circ}$

/ sr (Bev / c))

d² σ dpdΩ

(µb

Discovery of $d^*(2380)$

106

from an experienced by the WASA of COSY Collideration. The experimental results point to the existence of a new Dath plot of the 5-d versus the d²-d structure rand spaced to the $pd \rightarrow dp^2 d^2 + (specially protect) succession,$ 1-0, P-1 manager in the two-

taryon ayuna [II Adams et al., Phys. Rev. Lett. 106, 202003 (2011)]

PHYSICAL REVIEW LETTERS₁₀

Contents

n 106, Nomma 24 17 Ju	me 2011
1 Physics: Statistical and Quantum Mochanics, Quantum Information, etc. uss of Coheresor of Solitor Trains in Attractive flow-Ennlein Condemnates	240401
Vexej L Steelsow, Olir E. Alon, and Lorenz S. Codertuan Dynamical Decoupling for Quantum Computing and Quantum Memory	240501
Arsandre M. Souza, Conzalo A. Alvarez, and Denor Stuer of Optical Receivent to Attain Superadultive Capacity and the Holevo Limit	240502
sakiai Gubu al Topologicai Pause for Estungled Quilts	240503
and/or of Unconditional One-Way Quantum Computations for Continuous Variables	240504
iyuji Ukut, Noriaki Iwutu, Yuji Shimokuwa, Segi C. Armstrong, Alberta Politi, Jun-ichi Yozhikuwa, eler van Locck, and Aktra Furnsawa	
V. LOTTE, T. G. Inney, F. R. Fillel, M. Scharne, P. SL. Russell, and J. P. Woerdman d Coherence: Time on the Clock Transition of Optically Trapped Runfillim.	140801

10

1bit - 50.00

Gravitation and Astrophysics

Auflage: 383676 Frankfurter Allgemeine Zeitung, Frankfurt vom 29.06.2011 Seite: N1

Frankfurter Allgemeine

PRL 106 (24), 240401-249901, 17 June 2011 (240 total pages)

Top

das

Neuer Exot im Teilchenzoo? Teilchenbeschleunigern. Bei entspre-chend hohen Kollisionsenergien können dem Standardmodell der Teilchenpltysik

chen aus sechs Quarks Hinweise auf ein neues exotisches Teil-Jülich hat man Am Beschleuniger des deckung könnte ein gefunden. Die Ent-Forschungszentrums

S chon wieder ein neues Teilchen? Es ist noch keine zwei Monate her, da sorgte die Nachricht vom amerikanischen Forschungszentrum Fermilab in Von Robert Gast altes Rätsel lösen.

umfassenden Ringbeschleuniger Cosy na-hezu auf Lichtgeschwindigkeit beschleunigt und mit Neutronen kollidieren las-sen. Dabei verschmolzen die beiden Stoß-Experiment Protonen in dem 184 Meter gar aus sechs Quarks bestehen. möglicherweise gesichtet wurde, soll sogen Teilchenbeschleuniger Cosy jetzt nartner, die ieweils aus drei ()narks beste tische Quarkzustand, der am ringförmi-Die Wissenschaftler haben bei ihrem

immer wieder Hinweise auf die Existenz zufolge theoretisch auch Partikeln kreiert von Tetra- und Pentaquarks gab. Der exoauch wenn es in den vergangenen Jahren den experimentell nachgewiesen werden, Quarks bestehen. Bisher konnten jedoch werden, die aus vier, fünf oder aus sechs keine derartigen exotischen Quarkzustäneine statistische Schwankung oder einen Experten derweil, dass die Resonanz auf Jahren. sionen auftritt, also dann, wenn Forscher müssen aber noch zeigen, dass die Resonanz auch bei elastischen Kolli bei dem vermeintlichen Teilehenfund im Messfehler zurückzuführen ist, wie das baren Ergebnissen rechnen sie in zwei nicht zu einem Deuteron fusionieren Proton und das Neutron, die kollidieren Forscher demnächst angehen. Mit belast-Das ausstehende Experiment wollen die Als recht unwahrscheinlich gilt unter

gen, an der er nicht beteiligt war. Unabhängig davon, ob sich die Reso nanz als neues Teilchen entpuppt oder

in Hamburg über die Arbeit seiner Kolle der Fall gewesen war. "Das Experiment hat Hand und Fuß", sagt Ahmed Ali vom

Deutschen Elektronensynchrotron Desy

April am Tevatron höchstwahrscheinlich

REVIEW PHYSICAL

ETTERS

Articles published week ending 17 JUNE 2011

 $M_{d\pi}^2$ [GeV²] 55 4.5 S 2 M²_m [GeV²] 0.2 0.3 0.4 0 N ω

Why was it discovered by WASA-at-COSY and not by CELSIUS/WASA?

Discovery of $d^*(2380)$

CELSIUS/WASA preliminary results from: M.Bashkanov, H.Clement,

σ [mb] 1.6 1.6 0.6 0.8 0.2 0.4 1.4 12 COSY proposal 183 (2007) 2.4 2.6 2.8 3 \triangle DESY bubble chamber - without $\Delta\Delta$ resonance with $\Delta\Delta$ resonance JINR bubble chamber CELSIUS/WASA prel $pn \rightarrow d \pi^0 \pi^0 \bullet 2$ $pn \rightarrow d \pi^* \pi^*$ 3.2 3.4 ∖s [GeV]

Discovery of $d^*(2380)$

2 orders of magnitude larger statistics compared to CELSIUS/WASA! ... But how?

4 times narrower compared with $\Delta\Delta$, peak 80 MeV below 2 m Δ

Lorentzian shaped energy distribution

From CELSIUS to COSY: the $d^*(2380)$ example

CELSIUS/WASA preliminary results

2 orders of magnitude larger statistics compared to CELSIUS/WASA by...

complete redesign of DAQ system

improved pellet target reliability

strategic investments to remove bottlenecks:

note: historic slide covers only results until end of 2008!

 $< T_{\pi}$

0.04

0.02

First WASA-at-COSY Run April 2007: $\eta \rightarrow 3\pi^0$ Dalitz Plot

First step to compare dynamics with ChPT prediction: slope parameter α

combined CELSIUS/WASA statistics \rightarrow 75000 events four days of data taking $\rightarrow 120000$ events

-0.04

-0.02

- heaviest of octet Goldstone bosons \Rightarrow many open decay channels
- mass and all interactions vanish in the chiral limit \Rightarrow basis for effective field theory approach (ChPT)
- eigenstate of *P*, *C*, *CP*, and *G*, $I^{G}(J^{PC}) = 0^{+}(0^{-+})$ \Rightarrow first order strong and electromagnetic decays forbidden
- \Rightarrow laboratory to study (non-)conservation of these discrete symmetries

Tests of C symmetry in rare n decays

n decays into neutrals with an odd number of photons

• simplest case: $\eta \rightarrow 3\gamma$

$$\eta \rightarrow \gamma + (\gamma \gamma)_{J=0}$$
 forbidden for real $\gamma (0 \rightarrow 0$ transition)
 $\eta \rightarrow \gamma + (\gamma \gamma)_{J=1}$ forbidden by Bose symmetry

 \Rightarrow each ($\gamma\gamma$) pair hase to have at least J=2

 $BR(\eta \to 3\gamma) \le 1.6 \times 10^{-5}$

Crystal Ball PRC 72 (05) 035212

 $BR(\eta \to \pi^0 \gamma) \le 9 \times 10^{-5}$

KLOE PLB 591 (04) 49

•
$$\eta \to \pi^0 \gamma$$
 $0 \to 0$ transition

•
$$\eta \rightarrow \pi^0 \pi^0 \gamma$$
, $\eta \rightarrow 3 \pi^0 \gamma$, ...

 η decays into neutrals with an odd number of l^+l^-

• $\eta \rightarrow \pi^0 e^+ e^-$

Tests of C symmetry in rare n decays

η decays into neutrals with an odd number of l^+l^-

Standard Model C conserving contribution:

 $BR(\eta \to \pi^0 e^+ e^-) \approx 1.1 \times 10^{-8}$ T.P.Cheng, PR 162 (67) 1734

C invariance violating process:

 $BR(\eta \to \pi^0 e^+ e^-) \le 4.5 \times 10^{-5}$

PDG:

 $BR(\eta \to \pi^0 e^+ e^-) \le 4.0 \times 10^{-5}$

M.R.Jane et al., PLB 59 (75) 99

experiment:

 $\rightarrow \pi^0 e^+ e^-$ with WASA-at-COSY

F.S.Bergmann, PhD thesis, WWU Münster (2017) $pd \rightarrow {}^{3}HeX$, after preselection

$\rightarrow \pi^0 e^+ e^-$ with WASA-at-COSY

F.S. Bergmann, PhD thesis, $pd \rightarrow {}^{3}HeX$, signal selection WWU Münster (2017)

signal selection cuts

• missing mass m_X

• invariant mass $(e^+e^-\gamma\gamma)$

• invariant mass (e⁺e⁻)

- invariant mass $(\gamma\gamma)$
- $\chi^2 e^+ e^- \gamma \gamma$ kinematic fit • e⁺e⁻ identification

- 3 events left after selection criteria
- 2 events expected (pd \rightarrow ³He $\pi^+\pi^-\pi^0$)

BR $(\eta \to \pi^0 e^+ e^-) < 7.5 (9.5) \times 10^{-6}$ preliminary result:

factor 6 (5) below present upper limit

for VMD (phase space) decay of signal channel

publication drafted

WASA at GSI/FAIR

With the end of the experimental programme at COSY shall be used for excellent physics in future it has been the wish of the owners that the detector

WASA FD in use at COSY

WASA CD to GSI/FAIR: unique opportunity

Key ingredients:

- strong physics case
- investment against bottlenecks
- user community, manpower
- infrastructure

 \Rightarrow This workshop is the place to take important steps in these directions

Even if some people may be tempted to think so,

The WASA experiment

has (almost) nothing to do with

what you see on the picture!

The WASA Facility

an internal 4π detector

www2.fz juclich.de/ikp/wasa

Central Detector

- ...light meson decay products
- Superconducting Solenoid
- Plastic Scintillator Barrel
- Straw Chamber
- Scintillator Electromagnetic

Calorimeter

Forward Detector

- ...scattered projectiles and charged recoil particles
- Plastic Scintillators
- Forward Straw Tracker

Pellet Target

Typical Targ	et Values:
Pellet diameter	20 - 30µm
Pellet frequency	5 - 12kHz
Pellet velocity	60 - 80m/s
Effective thickness	$>10^{15}$ atoms/cm ²

droplet stream before vacuum injection

Goal: always one "pellet in beam"

Pellet rates

Higher droplet frequency Uniform time distribution Goal for target operation: always one "pellet in beam"

Pellet Tracking → Improved vertex reconstruction Time and velocity distribution → MC studies of pellet-beam interaction as preparation for PANDA

Future developments:

7600 7700

7800

7900

8000

8100

8200

8300

n tagging with WASA-at-COSY

 \Rightarrow precision studies for common decays

• 3×10^7 n mesons tagged

unbiased trigger

lower cross section

 $pp \rightarrow pp\eta$

- larger cross section
- \Rightarrow large statistics studies, rare decays
- ~5×10⁸ η mesons tagged
 - decay selective trigger required

n tagging with WASA-at-COSY

 \Rightarrow precision studies for common decays

• 3×10^7 n mesons tagged

unbiased trigger

Iower cross section

 $pp \rightarrow pp\eta$

- larger cross section
- \Rightarrow large statistics studies, rare decays
- ~5×10⁸ η mesons tagged
 - decay selective trigger required

Search $\pi^0 \rightarrow \gamma U$ with WASA

P.Adlarson et al., PLB 726 (2013) 187

 \Rightarrow considerable background from γ conversion

Search $\pi^0 \rightarrow \gamma U$ with WASA

P.Adlarson et al., PLB 726 (2013) 187

 \Rightarrow considerable background from γ conversion

but: vertex of conversion decays is not at the target point

Search $\pi^0 \rightarrow \gamma U$ with WASA

P.Adlarson et al., PLB 726 (2013) 187

-20

-40

-40

-20

0 0 20 x-vertex (mm)

40

 \Rightarrow considerable background from γ conversion

Search $\pi^{\nu} \rightarrow \gamma U$ with WASA

P.Adlarson et al., PLB 726 (2013) 187

Dark photon mixing parameter &

P.Adlarson et al., PLB 726 (2013) 187