

Charge Symmetry Breaking in the Reaction $dd \rightarrow {}^{4}\text{He}\pi^{0}$ with WASA-at-COSY

Maria Żurek Institute for Nuclear Physics, Research Center Jülich, Germany

Isospin Symmetry

Two sources of violation:

- Electromagnetic interaction
- Lightest quark mass difference → Window for probing quark-mass effects

Isospin Symmetry

Two sources of violation:

- Electromagnetic interaction
- Lightest quark mass difference → Window for probing quark-mass effects

Isospin Symmetry

Two sources of violation:

- Electromagnetic interaction
- Lightest quark mass difference → Window for probing quark-mass effects

Link between quark-mass efects and hadronic observables from Chiral Perturbation Theory

 πN scattering length, e.g., $a(\pi^0 p) - a(\pi^0 n) = f(\Delta M_{str})$ (Weinberg 1977) However: – No direct measurement of $\pi^0 N$ – Large e.m. corrections in $\pi^{\pm} N$

Charge Symmetry Breaking

Isospin Symmetry Breaking

Dominated by pion mass difference Δm_{π} – e.m. effect

Charge Symmetry (CS) Breaking

Symmetry under the operation of P^{CSB} - Δm_{π} does not contribute

Charge Symmetry Breaking

Isospin Symmetry Breaking

Dominated by pion mass difference Δm_{π} – e.m. effect

Charge Symmetry (CS) Breaking

Symmetry under the operation of P^{CSB} - Δm_{π} does not contribute

1. $np \rightarrow d\pi^0$ forward-backward asymmetry A_{fb} [1]

 $\Delta M_{str} = (1.5 \pm 0.8 \text{ (exp.)} \pm 0.5 \text{ (th.)}) \text{ MeV} \text{ (LO) [2]}$

Mitglied der Helmholtz-Gemeinschaft

[1] Opper et al. PRL 91 (2003) 212302

Charge Symmetry Breaking

Isospin Symmetry Breaking

Dominated by pion mass difference Δm_{π} – e.m. effect

Charge Symmetry (CS) Breaking

Symmetry under the operation of P^{CSB} - Δm_{π} does not contribute

1. $np \rightarrow d\pi^0$ forward-backward asymmetry A_{fb} [1]

 $\Delta M_{str} = (1.5 \pm 0.8 \text{ (exp.)} \pm 0.5 \text{ (th.)}) \text{ MeV} \text{ (LO) [2]}$

- 2. $dd \rightarrow {}^{4}\text{He}\pi^{0}$
 - $CS \Rightarrow \sigma = 0$ $GS \Rightarrow \sigma \neq 0, \sigma \propto |M_{CSB}|^2 = |M_1 + M_2 + \dots |^2$

 σ_{total} measured at treshold [3] – result cosistent with s-wave

Chiral Perturbation Theory

Information about higher partial waves in $dd \rightarrow {}^{4}\text{He}\pi^{0}$ needed

 \rightarrow Constraint of the contribution from the Δ resonance

[1] Opper et al. PRL 91 (2003) 212302[2] Filin et al.[3] Stephenson et al. PRL 91 (2003) 142302[4] Adlarson et al.

[2] Filin et al. Phys. Lett. B681 (2009) 423 [4] Adlarson et al. Phys. Lett. B 739 (2014) 44

28.11.2017

Mitglied der Helmhol

M. Żurek - CSB with WASA

WASA-at-COSY experiment

2007: Measurement of $dd \rightarrow {}^{3}Hen\pi^{0}$

goal: description of main background, input for initial-state-interaction calculations

2008: First measurement of $dd \rightarrow 4He\pi^0$ (2 weeks) @ Q = 60 MeVgoal: σ_{total}

2014: New measurement of $dd \rightarrow {}^{4}\text{He}\pi^{0}$ (10 weeks) @ Q = 60 MeV with modified detector goal: angular distribution

Analysis of $dd \rightarrow {}^{3}Hen\pi^{0}$

Benchmark for ${}^{4}\text{He}\pi^{0}$:

- clean selection of ${}^{3}\text{He}$ π^{0} coincidences
- final step: kinematic fit to ensure overall energy and momentum conservation
- 3.4 x 10⁶ fully reconstructed events, nearly full coverage of Dalitz plots

Analysis of $dd \rightarrow {}^{3}Hen\pi^{0}$

Luminosity determination:

 two-body reaction dd → ³Hen interpolated data from Bizard et al., PRC22 (1980) 1632: perfect match of expected angular distribution

Further analysis

- \rightarrow 3-body final state, unpolarized:
- 9 4 1 = 4 independent variables $M_{_{3Hen}}, \theta_p, \theta_q, \phi$

\rightarrow two-fold model ansatz:

- quasi-free contribution dd \rightarrow ³He π ⁰ + n_{spec}
- partial waves decomposition of the 3-body final state (limited to L≤1) full model = incoherent sum

Phys. Rev. C 88 (2013) 014004

Phys. Rev. C 88 (2013) 014004

 σ_{tot} = (2.89 ± 0.01_{stat} ± 0.06_{sys} ± 0.29_{norm}) µb

Model used for simulating the dd \rightarrow ³Hen π^0 background in the dd \rightarrow ⁴He π^0 measurement

Analysis of $dd \rightarrow {}^{4}\text{He}\pi^{0}$

- → Optimized cuts on cumulated probability distribution (p-value)
- \rightarrow Suppresion of $dd \rightarrow {}^{3}\text{Hen}\pi^{0}$ about 10⁴

Mitglied der Helmhol

Missing mass of $dd \rightarrow {}^{4}\text{He}X$

Four angular bins

Luminosity determination using $dd \rightarrow {}^{3}Hen\pi^{0}$

Differential cross section

Identical particles in the initial state \rightarrow forward-backward symmetric cross section $d\sigma/d\Omega = a + b \cos^2 \theta^*$ fit result:

a =
$$(1.55 \pm 0.46(\text{stat})^{+0.32}_{-0.8}(\text{syst}))$$
 pb/sr
b = $(13.1 \pm 2.1(\text{stat})^{+1.0}_{-2.7}(\text{syst}))$ pb/sr

Common systematic uncertainty of 10% from external normalization

Differential cross section

Identical particles in the initial state \rightarrow forward-backward symmetric cross section $d\sigma/d\Omega = a + b \cos^2 \theta^*$ fit result:

a =
$$(1.55 \pm 0.46(\text{stat})^{+0.32}_{-0.8}(\text{syst}))$$
 pb/sr
b = $(13.1 \pm 2.1(\text{stat})^{+1.0}_{-2.7}(\text{syst}))$ pb/sr

Common systematic uncertainty of 10% from external normalization

p-wave

Considering only *s*- and *p*-waves [1]: $b = -\frac{p_{\pi^0}}{p} \frac{2}{3} |C|^2 p_{\pi^0}^2$

- *p*-waves contribute with a **negative** sign \rightarrow maximum at 90° in angular distribution
- Observed minimum at $90^{\circ} \rightarrow$ explained only with **d-waves** in the final state

Data establish for the first time presence of sizable contribution of d-waves

[1] A. Wronska et al., Eur. Phys. J. A26, 421 (2005).

Quantitative results

Including *d*-waves, terms up to fourth order in pion momentum has to be considered:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{p_{\pi^0}}{p} \frac{2}{3} \Big(|A_0|^2 + 2\operatorname{Re}(A_0^*A_2)P_2(\cos\theta^*)p_{\pi^0}^2 + |A_2|^2 P_2^2(\cos\theta^*)p_{\pi^0}^4 + |C|^2\sin^2\theta^* p_{\pi^0}^2 \Big) \Big) \Big| P_1(\cos\theta^*)p_{\pi^0}^2 + |A_2|^2 P_2^2(\cos\theta^*)p_{\pi^0}^4 + |C|^2\sin^2\theta^* p_{\pi^0}^2 \Big) \Big| P_2(\cos\theta^*)p_{\pi^0}^2 + |A_2|^2 P_2^2(\cos\theta^*)p_{\pi^0}^4 + |C|^2\sin^2\theta^* p_{\pi^0}^2 \Big) \Big| P_2(\cos\theta^*)p_{\pi^0}^2 + |A_2|^2 P_2^2(\cos\theta^*)p_{\pi^0}^4 + |C|^2\sin^2\theta^* p_{\pi^0}^2 \Big) \Big| P_2(\cos\theta^*)p_{\pi^0}^2 + |A_2|^2 P_2^2(\cos\theta^*)p_{\pi^0}^4 + |C|^2\sin^2\theta^* p_{\pi^0}^2 \Big) \Big| P_2(\cos\theta^*)p_{\pi^0}^2 + |A_2|^2 P_2^2(\cos\theta^*)p_{\pi^0}^4 + |C|^2\sin^2\theta^* p_{\pi^0}^2 \Big) \Big| P_2(\cos\theta^*)p_{\pi^0}^2 + |A_2|^2 P_2^2(\cos\theta^*)p_{\pi^0}^4 + |C|^2\sin^2\theta^* p_{\pi^0}^2 \Big) \Big| P_2(\cos\theta^*)p_{\pi^0}^2 + |A_2|^2 P_2^2(\cos\theta^*)p_{\pi^0}^4 + |C|^2\sin^2\theta^* p_{\pi^0}^2 \Big) \Big| P_2(\cos\theta^*)p_{\pi^0}^2 + |A_2|^2 P_2^2(\cos\theta^*)p_{\pi^0}^4 + |C|^2\sin^2\theta^* p_{\pi^0}^2 \Big) \Big| P_2(\cos\theta^*)p_{\pi^0}^2 + |A_2|^2 P_2^2(\cos\theta^*)p_{\pi^0}^4 + |C|^2\sin^2\theta^* p_{\pi^0}^2 \Big) \Big| P_2(\cos\theta^*)p_{\pi^0}^2 + |A_2|^2 P_2^2(\cos\theta^*)p_{\pi^0}^4 + |C|^2\sin^2\theta^* p_{\pi^0}^2 \Big| P_2(\cos\theta^*)p_{\pi^0}^2 + |A_2|^2 P_2^2(\cos\theta^*)p_{\pi^0}^2 + |C|^2 P_2^$$

 $+|B|^2\sin^2\theta^*\cos^2\theta^*p_{\pi^0}$

Quantitative results

Including *d*-waves, terms up to fourth order in pion momentum has to be considered:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{p_{\pi^0}}{p} \frac{2}{3} \left(|A_0|^2 + 2 \operatorname{Re}(A_0^*A_2) P_2(\cos\theta^*) p_{\pi^0}^2 + |A_2|^2 P_2^2(\cos\theta^*) p_{\pi^0}^4 + |C|^2 \sin^2\theta^* p_{\pi^0}^2 + |B|^2 \sin^2\theta^* \cos^2\theta^* p_{\pi^0}^4 \right)$$

}

Quantitative results

Including *d*-waves, terms up to fourth order in pion momentum has to be considered:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{p_{\pi^0}}{p} \frac{2}{3} \left(|A_0|^2 + 2 \operatorname{Re}(A_0^*A_2) P_2(\cos\theta^*) p_{\pi^0}^2 + |A_2|^2 P_2^2(\cos\theta^*) p_{\pi^0}^4 + |C|^2 \sin^2\theta^* p_{\pi^0}^2 + |B|^2 \sin^2\theta^* \cos^2\theta^* p_{\pi^0}^4 \right)$$

Assuming that amplitudes do not carry any momentum dependence

 \rightarrow simultaneous fit of angular distribution and momentum dependence of total cross section

$$\sigma_{\rm tot} = \frac{p_{\pi^0}}{p} \frac{8\pi}{3} \left(|A_0|^2 + \frac{2}{3}|C|^2 p_{\pi^0}^2 + \frac{1}{5}|A_2|^2 p_{\pi^0}^4 + \frac{2}{15}|B|^2 p_{\pi^0}^4 \right)$$

Quantitative results

Including *d*-waves, terms up to fourth order in pion momentum has to be considered:

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{p_{\pi^0}}{p} \frac{2}{3} \left(|A_0|^2 + 2 \operatorname{Re}(A_0^*A_2) P_2(\cos\theta^*) p_{\pi^0}^2 + |A_2|^2 P_2^2(\cos\theta^*) p_{\pi^0}^4 + |C|^2 \sin^2\theta^* p_{\pi^0}^2 \right) + |B|^2 \sin^2\theta^* \cos^2\theta^* p_{\pi^0}^4 \right)$

Assuming that amplitudes do not carry any momentum dependence

 \rightarrow simultaneous fit of angular distribution and momentum dependence of total cross section

$$\sigma_{\text{tot}} = \frac{p_{\pi^0}}{p} \frac{8\pi}{3} \left(|A_0|^2 + \frac{2}{3}|C|^2 p_{\pi^0}^2 + \frac{1}{5}|A_2|^2 p_{\pi^0}^4 + \frac{2}{15}|B|^2 p_{\pi^0}^4 \right)$$

Systematic check of the fit:

- $|B|^2$ consistent with 0 within the fit error
- $|C|^2$ consistent with 0 within the fit error
- Other parameters: stable within the fit error
- \rightarrow Assumption about $|A_0|^2$ momentum
- independence reasonable

→ Relative phase δ between A_0 and A_2 : 0 with a statistical uncertainty in the range ±(1.0 – 1.6) rad

Quantitative results

Including *d*-waves, terms up to fourth order in pion momentum has to be considered:

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{p_{\pi^0}}{p} \frac{2}{3} \left(|A_0|^2 + 2 \operatorname{Re}(A_0^*A_2) P_2(\cos\theta^*) p_{\pi^0}^2 + |A_2|^2 P_2^2(\cos\theta^*) p_{\pi^0}^4 + |C|^2 \sin^2\theta^* p_{\pi^0}^2 \right) + |B|^2 \sin^2\theta^* \cos^2\theta^* p_{\pi^0}^4 \right)$

Assuming that amplitudes do not carry any momentum dependence

 \rightarrow simultaneous fit of angular distribution and momentum dependence of total cross section

$$\sigma_{\text{tot}} = \frac{p_{\pi^0}}{p} \frac{8\pi}{3} \left(|A_0|^2 + \frac{2}{3}|C|^2 p_{\pi^0}^2 + \frac{1}{5}|A_2|^2 p_{\pi^0}^4 + \frac{2}{15}|B|^2 p_{\pi^0}^4 \right)$$

Conclusions

- First measurement of contributions of higher partial waves in the charge symmetry breaking reaction dd \rightarrow ⁴He π^0
- Angular distribution with a minimum at θ*= 90° can be understood only by the presence of a significant *d*-wave contribution in the final state
- Data are consistent with vanishing p-wave contribution

• Deep insights not only into the dynamics of the nucleon-nucleon interaction but also the role of **quark masses in hadron dynamic**

Backup

28.11.2017

23

Leading diagrams of CSB reactions

Formally leading operators for *p*-wave pion production in $dd \rightarrow {}^{4}He\pi^{0}$.

Leading order diagram for the CSB *s*-wave amplitudes of the $np \rightarrow d\pi^0$ reaction