Baryon Resonances in Nuclear Matter and Neutron Stars

WASA@FRS , November 2017 H. Lenske

Institut für Theoretische Physik

Agenda:

- Resonance excitation in nucleus-nucleus reactions
- The excited nucleon in nuclei: N^{*}N⁻¹ modes of excitation
- Nuclear response functions with resonances: N*RPA
- Astrophysics: "resonance puzzle" in neutron stars

N* Resonance Spectroscopy

Nucleon Resonances in πN Scattering

...see e.g. the Giessen Coupled Channels Model (GiM) (V. Shklyar, Xu Cao, H.L. et al.)

Evidence for Resonances in Nuclei

Δ -Resonance and Nuclear Matter Binding Energy

Δ -Resonance and the GT-Quenching Problem:

~50% of the Ikeda Sum Rule is missing

Resonance Excitation in Nucleus-Nucleus Reactions

...SATURNE@Saclay and Synchro-Phasetron@Dubna (1980ties and 1990ties)

Nucleon Resonances in Nuclei at the FRS@1AGeV

Data: J. Benlliure and the S363 collaboration

Theory of Peripheral Heavy Ion Reactions

$$\frac{d^{2}\sigma}{d\Omega dE_{x}} \sim \sum_{bB} \left| M_{aA \to bB} \left(\omega, \vec{q} \right) \right|^{2} \delta(E_{x} - \omega) \sim \sum_{bB} \left| \left\langle \chi_{\beta}^{(-)}, bB \left| T_{NN} \left| aA, \chi_{\alpha}^{(+)} \right\rangle \right|^{2} \delta(E_{x} - \omega) \sim \int d^{3}p \int d\omega \left| N_{\alpha\beta}(\vec{q}, \vec{p}) \right|^{2} \left[\sum_{S,T=0,1} \left| V_{ST}^{(C)}(p^{2}) \right|^{2} R_{a,ST} \left(E_{x} - \omega, \vec{q} - \vec{p} \right) \bullet R_{A}^{ST} \left(\omega, \vec{p} \right) + \dots \right]$$

a+A and b+B Elastic Interactions:

$$N_{\alpha\beta}(\vec{q},\vec{p}) = \left\langle \chi_{\beta}^{(-)} \left| e^{i\vec{p}\cdot\vec{r}} \right| \chi_{\alpha}^{(+)} \right\rangle$$

Projectile-Target Nucleon-Nucleon Interaction:

$$T_{NN} = V_{00}^{(C)}(q^2) \mathbf{1}_a \mathbf{1}_A + V_{10}^{(C)}(q^2) \vec{\sigma}_a \bullet \vec{\sigma}_A + V_{01}^{(C)}(q^2) \vec{\tau}_a \bullet \vec{\tau}_A + V_{11}^{(C)}(q^2) \vec{\tau}_a \vec{\sigma}_a \bullet \vec{\tau}_A \vec{\sigma}_A + \dots$$

Hadronic Tensor:

$$R_{X}^{\mu\nu}\left(\omega,\vec{q}\right) == -\frac{1}{\pi} \operatorname{Im}\left(\left\langle X \left| O^{\dagger\mu}G_{X}\left(\omega,\vec{q}\right)O^{\nu} \left| X \right\rangle\right)\right)$$

Projectile-Target Nucleon-Nucleon Interactions

Charge Changing $\Delta Q = \pm 1$ Excitation of Quasi-elastic NN⁻¹, and N*N⁻¹ States

Operator Structure for (NN⁻¹, N*N⁻¹) excitations:

$$\left\{1_{\sigma}, \vec{\sigma}, \vec{\sigma} \bullet \vec{q}, \vec{\sigma} \times \vec{q}\right\} \otimes \tau^{\pm}$$

...and quasielastic knockout and multistep reactions!

Resonances in Nuclear Matter

Δ/N^* Dynamics in Nuclear Matter

→ Hartree-Potential

$$\begin{split} U_{\Delta}^{(\mathrm{H})} &= U_{0} + U_{1} \tau_{\Delta} \cdot \tau_{\mathrm{N}} \\ U_{\Delta}^{(\mathrm{H})} &\sim U_{0} + U_{1} t_{\mathrm{z}}^{(\Delta)} \cdot \frac{\mathrm{N} - \mathrm{Z}}{\mathrm{A}} \end{split}$$

N N N N π,η,ω,ρ,σ,δ...

Dynamical Self-Energy → dispersive (optical) potential

$$\begin{split} \Sigma_{\text{pol}}^{(\Delta)} &\sim \Sigma_0 + \Sigma_1 t_z^{(\Delta)} \frac{N - Z}{A} \\ \Sigma_\alpha &= V_\alpha - i W_\alpha \end{split}$$

....see e.g.:

E. Oset, L.L. Salcedo, NPA 468 (1987) 631; G.E. Brown, W. Weise, Phys. Rept. 22 (1975) 279

Inclusive ¹²C(p,n)-reaction @SATURNE

Experimental zero-degree spectra of the ${}^{12}C(p,n)$ reaction [5] in comparison with the $p(p,n)\Delta^{++}$ reaction at E = 800 MeV.

The origin of the apparent mass shift in stable nuclei... ...a combination of medium and reaction effects

Decomposition of the zero-degree singles cross section into partial cross sections for the ¹²C (p, n) reaction at E=800 MeV. The different cross section contributions are due to quasifree Δ decay (QF), Δ spreading (SP), and coherent pion production (CPP).

T. Udagawa et al. PRC 49:3162 (1994)

Nuclear Response Functions

Resonance Excitation in Nuclei: "N*RPA"

$$\Pi = \Pi^{0} + \Pi^{0} \hat{V} \Pi$$

$$\begin{pmatrix} \Pi_{NN} & \Pi_{N\Delta} \\ \Pi_{\Delta N} & \Pi_{\Delta\Delta} \end{pmatrix} = \begin{pmatrix} \Pi_{NN}^{0} & 0 \\ 0 & \Pi_{\Delta\Delta}^{0} \end{pmatrix} + \begin{pmatrix} \Pi_{NN}^{0} & 0 \\ 0 & \Pi_{\Delta\Delta}^{0} \end{pmatrix} \begin{pmatrix} V_{NN} & V_{N\Delta} \\ V_{\Delta N} & V_{\Delta\Delta} \end{pmatrix} \begin{pmatrix} \Pi_{NN} & \Pi_{N\Delta} \\ \Pi_{\Delta N} & \Pi_{\Delta\Delta} \end{pmatrix}$$

- Full RPA includes Δ-N mixing
- Non-perturbative problem
- QE-peak is influenced by intermediate Δ-hole pairs
- Structure of the spin-isospin response can give a deeper understanding of the Δ-N interaction

Delta-Resonance Excitation in Inclusive (e,e') Scattering

Decay Spectroscopy

$$p+p \rightarrow \begin{cases} n+\Delta^{++} \rightarrow n+p+\pi^{+} \\ p+\Delta^{+} \rightarrow p+n+\pi^{+} \\ \rightarrow p+p+\pi^{0} \end{cases}$$
$$p+n \rightarrow \begin{cases} p+\Delta^{0} \rightarrow n+p+\pi^{0} \\ n+\Delta^{+} \rightarrow n+n+\pi^{+} \\ \rightarrow p+n+\pi^{0} \end{cases}$$

Exclusive Reactions: Resonance Excitation and Meson Production in Ion-Ion Collisions

Exclusive reaction: Single-Pion Decay Spectroscopy

- (*p*,*n*) reaction at KEK, $T_{lab} = 830$ Mev on ¹²C
- (³He,t) reaction at Saturne, $T_{lab} = 2 \text{GeV on}^{12} \text{C}$ igodol

FANCY@KEK 88% of 4π DIOGENE@SATURNE ~100% of 4π J. Chiba et al., Phys. Rev. Lett. 67, 1982 (1991) T. Hennino et al., Phys. Lett. B 283, 42 (1992) Theory: S. Das, PRC 66:014604 (2002) H. Lenske, WASA@FAIR 2017

unit)

rel.

(Exp.

100

Decay Spectroscopy of Higher Resonances in A+A Collisions (Single and) Double-pion Decay Spectroscopy

	$M \;({ m MeV}/c^2)$	$\Gamma ~({ m MeV}/c^2)$
N(1440)	1380 ± 10	130 ± 20
N(1520)	1550 ± 20	230 ± 30
The 3rd peak	1810 ± 30	510 ± 40

	$M~({ m MeV}/c^2)$	$\Gamma \;({ m MeV}/c^2)$
N(1440)	1420 ± 10	105 ± 15
N(1520)	1570 ± 20	190 ± 60
The 3rd peak	1790 ± 120	410 ± 90

Eur. Phys. J. A 20, 351–354 (2004)

N* Resonances in Neutron Stars

Δ 's in Neutron Stars

Mass-Radius-relationship of Neutron stars for various couplings of the Δ resonances, starting from $r_v = 1$ (upper line) to 0.8 (lowest line). Also included are the 1- σ errorbars for measured neutron stars. The black diamond on each curve represents the maximum stable configuration

Schürhoff, Schramm, Dexheimer, 2010

Resonances and Hyperons in Neutron Star Matter

A. Drago et al. Eur. Phys. J. A (2016) 52

Mass-Radius Relation for a Neutron Star "Driving up the mass by *Vector Repulsion*"

J. Wilhelm, H.L, EPJ WoC 107

Resonances and Hyperons in Neutron Star Matter Maximum Mass of a Neutron Star

...as a function of the ∞ - Δ vector meson coupling constant

A. Drago et al. Phys. Rev. C 9:065809 (2014)

Summary and Outlook

- Resonances as nuclear structure probes
- Resonances and nuclear isospin dynamics
- Resonances and nuclear response functions
- Resonance tagging by decay spectroscopy
- Resonances beyond Δ (1232)
- Resonance "puzzle" in neutron stars

Credits to Andreas Fedoseew and Isaac Vidana ...supported by DFG, GSI, HIC for FAIR, BMBF

QCD Wave Function of a Resonance

- hadronic (soft scale) molecular-type components |N_s>
- QCD (hard scale) confined components |N_h>

$$\left|N^{*}\right\rangle = \left|N_{s}^{*}\right\rangle + \left|N_{h}^{*}\right\rangle = x_{1}\left|mB\right\rangle + x_{2}\left|qqq\right\rangle + x_{3}\left|qqq\right\rangle \otimes \left|q\overline{q}\right\rangle + \dots$$

$$|N_{\rm h}^*\rangle = |qqq\rangle + |{\rm m.c.}\rangle$$

Strong Medium Dependence

Weak Medium Dependence

N* Resonances and Neutrino-Nucleus Interactions

Neutrino-Nucleus Cross Sections and $N\Delta$ -Response Functions: v_e +N $\rightarrow \Delta \rightarrow$ N+ π Reactions

$$\frac{\partial^2 \sigma}{\partial \Omega \partial k'} = \frac{G_F^2 \cos^2 \theta_c(k')^2}{2\pi^2} \cos^2 \frac{\theta}{2} \left\{ G_E^2 \left(\frac{q_\mu^2}{q^2} \right)^2 R_\tau^{NN} \right. \\ \left. + G_A^2 \frac{(M_\Delta - M_N)^2}{2q^2} R_{\sigma\tau(L)}^{N\Delta} + G_A^2 \frac{(M_\Delta - M_N)^2}{q^2} \right. \\ \left. \times R_{\sigma\tau(L)}^{\Delta\Delta} + \left(G_M^2 \frac{\omega^2}{q^2} + G_A^2 \right) \left(-\frac{q_\mu^2}{q^2} + 2 \tan^2 \frac{\theta}{2} \right) \right. \\ \left. \times \left[R_{\sigma\tau(T)}^{NN} + 2R_{\sigma\tau(T)}^{N\Delta} + R_{\sigma\tau(T)}^{\Delta\Delta} \right] \pm 2G_A G_M \frac{k + k'}{M_N} \right. \\ \left. \times \tan^2 \frac{\theta}{2} \left[R_{\sigma\tau(T)}^{NN} + 2R_{\sigma\tau(T)}^{N\Delta} + R_{\sigma\tau(T)}^{\Delta\Delta} \right] \right\}$$

34

Inclusive CC cross section

J. Nieves, I. Ruiz Simo, M. J. Vicente Vacas PRC 83, 045501 (2011)

Gießen "N-∆ RPA"