

Lecture 2: Hyperon Production and Spin Dynamics

PANDA lecture week, December 11-15, 2017

Karin Schönning, Uppsala University

Outline

- Summary of lecture 1
- Spin observables in $\bar{p}p \rightarrow \bar{Y}Y$
 - Sequential hyperon decays
 - The spin $\frac{3}{2}$ case
- CP violation in hyperon decays
- Questions for discussion

Summary of lecture 1

- Hyperons serve as a diagnostic tool for questions like
 - Why and how quarks are bound into hadrons?
 - How is mass generated by the strong interaction?
 - Matter-antimatter asymmetry of the Universe?
- Degrees of freedom unclear in processes involving strange hyperons.
- Spin observables powerful tool in testing models.
- Strong and EM production allows polarisation perpendicular to the production plane.
- Polarisation extracted from decay angular distributions.

Spin observables in $\overline{p}p \rightarrow \overline{Y}Y$

The angular distribution is obtained by the trace

 $\mathit{I}_{0}^{\bar{\mathrm{B}}\mathrm{B}}=\mathrm{Tr}(\rho^{\bar{\mathrm{B}}\mathrm{B}})$

With an unpolarised beam and unpolarised taget this becomes

$$I_{\bar{B}B}(\Theta_{\bar{Y}},\hat{\bar{k}},\hat{k}) = \frac{I_0}{64\pi^3} \begin{pmatrix} 1 \\ +P_{\bar{Y},y}\bar{\alpha}\bar{k}_y + P_{Y,y}\alpha k_y \\ +C_{xx}\bar{\alpha}\alpha\bar{k}_x k_x \\ +C_{yy}\bar{\alpha}\alpha\bar{k}_y k_y \\ +C_{zz}\bar{\alpha}\alpha\bar{k}_z k_z \\ +C_{zz}\bar{\alpha}\alpha\bar{k}_z k_z \\ +C_{zx}\bar{\alpha}\alpha\bar{k}_z k_x \\$$

Spin observables in $\overline{p}p \rightarrow \overline{Y}Y$

The angular distribution is obtained by the trace

 $\mathit{I}_{0}^{\bar{\mathrm{B}}\mathrm{B}}=\mathrm{Tr}(\rho^{\bar{\mathrm{B}}\mathrm{B}})$

With an unpolarised beam and unpolarised taget this becomes

$$I_{\bar{B}B}(\Theta_{\bar{Y}},\hat{\bar{k}},\hat{k}) = \frac{I_0}{64\pi^3} \begin{pmatrix} 1 \\ +P_{\bar{Y},y}\bar{\alpha}\bar{k}_y + P_{Y,y}\alpha k_y \\ +C_{xx}\bar{\alpha}\alpha\bar{k}_x k_x \\ +C_{yy}\bar{\alpha}\alpha\bar{k}_y k_y \\ +C_{zz}\bar{\alpha}\alpha\bar{k}_z k_z \\ +C_{xz}\bar{\alpha}\alpha\bar{k}_z k_z \\ +C_{zx}\bar{\alpha}\alpha\bar{k}_z k_x \\ +C_{zx}\bar{\alpha}\alpha\bar{k}_z k_x \\ +C_{zx}\bar{\alpha}\alpha\bar{k}_z k_x \\ -Depend on \\ decay. \end{pmatrix}$$

The angular distribution is obtained by the trace

 $I_0^{\bar{\mathrm{B}}\mathrm{B}} = \mathrm{Tr}(\rho^{\bar{\mathrm{B}}\mathrm{B}})$

With an unpolarised beam and unpolarised taget this becomes

$$I_{\bar{B}B}(\Theta_{\bar{Y}},\hat{\bar{k}},\hat{k}) = \frac{I_0}{64\pi^3} \begin{pmatrix} 1 \\ +P_{\bar{Y},y}\bar{\alpha}\bar{k}_y + P_{Y,y}\alpha k_y \\ +C_{xx}\bar{\alpha}\alpha\bar{k}_x k_x \\ +C_{yy}\bar{\alpha}\alpha\bar{k}_y k_y \\ +C_{zz}\bar{\alpha}\alpha\bar{k}_z k_z \\ +C_{zz}\bar{\alpha}\alpha\bar{k}_z k_z \\ +C_{xz}\bar{\alpha}\alpha\bar{k}_z k_z \\ +C_{zx}\bar{\alpha}\alpha\bar{k}_z k_x \\ -C_{zx}\bar{\alpha}\alpha\bar{k}_z k_x \\$$

Hyperons from $\bar{p}p$ reactions

The polarisation depend on energy and angle, and different models predict different dependencies.

Figure from Phys. Rep. 368 (2002) 119.

 $e^+e^- \rightarrow \overline{Y}Y$ where the angular dependence can be parameterised in terms of electromagnetic form factors (EMFF's)*

$$P_n = -\frac{\sin 2\theta Im[G_E(Q^2)G_M^*(Q^2)]/\sqrt{\tau}}{(|G_E(Q^2)|^2\sin^2\theta)/\tau + |G_M(Q^2)|^2(1+\cos^2\theta)}$$

*Nuovo Cim. A 109 (1996) 241. ** hep-ph 1702.07288

The singlet fraction can be defined as

$$SF = \frac{1}{4} (1 + C_{xx} - C_{yy} + C_{zz})$$

The PS185 experiment found that $\overline{\Lambda}\Lambda$ are almost exclusively produced in a spin triplet state*.

*PRC 54 (1996) 1877

Subsequent hyperon decays

Consider a hyperon decaying into another hyperon, $e.g. \equiv \rightarrow \Lambda \pi$.

Spinwise this can be described as

$$\frac{1}{2} \rightarrow \frac{1}{2} \ 0 \rightarrow \frac{1}{2} \ 0 \ 0$$

In this case we have two decay matrices, denoted T_1 and T_2 .

Subsequent hyperon decays

Consider a hyperon decaying into another hyperon, $e.g. \equiv \rightarrow \Lambda \pi$.

Spinwise this can be described as

$$\frac{1}{2} \rightarrow \frac{1}{2} \ 0 \rightarrow \frac{1}{2} \ 0 \ 0$$

In this case we have two decay matrices, denoted T_1 and T_2 .

The joint angular distribution is given by $I = Tr(T_2T_1\rho T_1^{\mathsf{T}}T_2^{\mathsf{T}})$

By calculating the trace $Tr(T_2T_1\rho T_1^{\dagger}T_2^{\dagger})$ and integrating over the intermediate hyperon angles, the proton angular distribution is given by

$$I(\theta_{\rm p}, \phi_{\rm p}) = \frac{1}{4\pi} \left(1 + \alpha_{\Xi} \alpha_{\Lambda} \cos \theta_{\rm p} + \frac{1}{2} \alpha_{\Lambda} P_{\mathcal{Y}} \sin \theta_{\rm p} (\beta_{\Xi} \cos \phi_{\rm p} + \gamma_{\Xi} \sin \phi_{\rm p}) \right)$$

By calculating the trace $Tr(T_2T_1\rho T_1^{\mathsf{T}}T_2^{\mathsf{T}})$ and integrating over the intermediate hyperon angles, the proton angular distribution is given by

$$I(\theta_{p}, \phi_{p}) = \frac{1}{4\pi} \left(1 + \alpha_{\Xi} \alpha_{\Lambda} \cos \theta_{p} + \frac{1}{2} \alpha_{\Lambda} P_{y} \sin \theta_{p} (\beta_{\Xi} \cos \phi_{p} + \gamma_{\Xi} \sin \phi_{p}) \right)$$

$$\prod_{X} In \text{ this way one can extract } \beta \text{ and } \gamma !$$

The Ω hyperon is more complicated.

- Spin $\frac{1}{2}$: **3** polarisation parameters: r_{-1}^{1} , r_{0}^{1} and r_{1}^{1} (P_x, P_y and P_z)
- Spin $\frac{3}{2}$: **15** polarisation parameters: r_{-1}^{1} , r_{0}^{1} , r_{1}^{1} , r_{-2}^{2} , r_{-1}^{2} , r_{0}^{2} , r_{1}^{2} , r_{2}^{2} , r_{-3}^{3} , $\frac{2}{r_{-2}^{3}}$, r_{-1}^{3} , r_{0}^{3} , r_{1}^{3} , r_{2}^{3} and r_{3}^{3} .

Spin observables for spin $\frac{3}{2}$ hyperons

Density matrix:

4

- Spin $\frac{3}{2}$: **15** polarisation parameters: $r_{.1}^{1}$, r_{0}^{1} , r_{1}^{1} , $r_{.2}^{2}$, $r_{.1}^{2}$, r_{0}^{2} , r_{1}^{2} , r_{2}^{2} , $r_{.3}^{2}$, $r_{.3}^{3}$, $r_{.2}^{3}$, $r_{.1}^{3}$, r_{0}^{3} , r_{1}^{3} , r_{2}^{3} and r_{3}^{3} .
- Strong production process → parity is conserved → 8 polarisation parameters equal 0.
- Resulting density matrix $\rho\left(\frac{3}{2}\right)$:*

$$\begin{bmatrix} 1+\sqrt{3}r_{0}^{2} & -i\frac{3}{\sqrt{5}}r_{-1}^{1}+\sqrt{3}r_{1}^{2}-i\sqrt{\frac{6}{5}}r_{-1}^{3} & \sqrt{3}r_{2}^{2}-i\sqrt{3}r_{-2}^{3} & -i\sqrt{6}r_{-3}^{3} \\ i\sqrt{\frac{6}{5}}r_{-1}^{3}+i\frac{3}{\sqrt{5}}r_{-1}^{1}+\sqrt{3}r_{1}^{2} & 1-\sqrt{3}r_{0}^{2} & -i2\sqrt{\frac{3}{5}}r_{-1}^{1}+i3\sqrt{\frac{2}{5}}r_{-1}^{3} & \sqrt{3}r_{2}^{2}+i\sqrt{3}r_{-2}^{3} \\ \sqrt{3}r_{2}^{2}+i\sqrt{3}r_{-2}^{3} & i2\sqrt{\frac{3}{5}}r_{-1}^{1}-i3\sqrt{\frac{2}{5}}r_{-1}^{3} & 1-\sqrt{3}r_{0}^{2} & -i\frac{3}{\sqrt{5}}r_{-1}^{1}+\sqrt{3}r_{1}^{2}-i\sqrt{\frac{6}{5}}r_{-1}^{3} \\ i\sqrt{6}r_{-3}^{3} & \sqrt{3}r_{2}^{2}-i\sqrt{3}r_{-2}^{3} & i\frac{3}{\sqrt{5}}r_{-1}^{1}+\sqrt{3}r_{1}^{2}+i\sqrt{\frac{6}{5}}r_{-1}^{3} & 1+\sqrt{3}r_{0}^{2} \end{bmatrix}$$

* Erik Thomé, PhD thesis, Uppsala University (2012)

First, let's focus on $\Omega^- \to \Lambda K^-$, *i.e.* $\frac{3}{2} \to \frac{1}{2} 0$.

Weak decay: parity conserving *P*-state and parity violating *D*-state allowed.

Amplitudes: T_P and T_D .

Using the *method of moments*, the **3** polarisation parameters r_2^2 , r_1^2 , r_0^2 can be extracted from the angular distribution of the Λ :*

$$< \sin\theta_{\Lambda} > = \frac{\pi}{32} (8 + r_0^2 \sqrt{3})$$
$$< \cos\varphi_{\Lambda} \cos\theta_{\Lambda} > = -\frac{3\pi}{32} r_1^2$$
$$< \sin^2\varphi_{\Lambda} > = \frac{1}{4} (2 + r_2^2)$$

*Elisabetta Perotti, FAIRNESS (2017)

UPPSALA UNIVERSITET

Spin observables for spin $\frac{3}{2}$ hyperons

π

 $\langle \sin \phi_{\Lambda} \cos \phi_{\rm p} \rangle$ Four polarisation parameters can be $= \int I(\theta_{\Lambda}, \phi_{\Lambda}, \theta_{\rm p}, \phi_{\rm p}) \times \sin \phi_{\Lambda} \cos \phi_{\rm p} d\Omega_{\Lambda} d\Omega_{\rm p} =$ determined from the joint angular distributions of the Λ and the proton *: $= -\frac{3\pi^2 \alpha_\Lambda \gamma_\Lambda r_{-2}^3}{1024}$ $\langle (3\cos\theta_{\Lambda}-1)\sin\phi_{\rm p} \rangle$ $= \int I(\theta_{\Lambda}, \phi_{\Lambda}, \theta_{\rm p}, \phi_{\rm p}) \times (3\cos\theta_{\Lambda} - 1)\sin\phi_{\rm p}d\Omega_{\Lambda}\epsilon$ $= -\frac{\pi \alpha_{\Lambda} \gamma r_{-1}^3}{4 \sqrt{10}}$ $\langle \sin \phi_{\rm p} \rangle$ $= \int I(\theta_{\Lambda}, \phi_{\Lambda}, \theta_{\rm p}, \phi_{\rm p}) \times \sin \phi_{\rm p} d\Omega_{\Lambda} d\Omega_{\rm p} =$ Ω $=\frac{\pi\alpha_{\Lambda}\gamma_{\Omega}}{160}\left(-4\sqrt{16r_{-1}^{1}}+\sqrt{10r_{-1}^{3}}\right)$ K $\langle \sin \phi_{\Lambda} \cos \phi_{\Lambda} \cos \phi_{\rm p} \rangle$ $= \int I(\theta_{\Lambda}, \phi_{\Lambda}, \theta_{\rm p}, \phi_{\rm p}) \times \sin \phi_{\Lambda} \cos \phi_{\Lambda} \cos \phi_{\rm p} d\Omega_{\Lambda} d\Omega_{\rm p} =$ $=\frac{\pi\alpha_{\Lambda}\gamma_{\Omega}}{c_{AO}}\left(5\sqrt{6r_{-3}^3}+4\sqrt{16r_{-1}^1}\right)$ *Erik Thomé, Ph. D. Thesis and Elisabetta Perotti, FAIRNESS

Spin observables in $\bar{p}p \rightarrow \bar{Y}Y$

- Spin $\frac{1}{2}$ hyperons (Λ , Ξ , Λ_c) :
 - Polarisation.
 - Spin correlations and singlet fraction: $SF = \frac{1}{4}(1 + C_{xx} - C_{yy} + C_{zz})$
- Spin $\frac{3}{2}$ hyperons into spin $\frac{1}{2}$ hyperons ($\Omega \rightarrow \Lambda K$):
 - 7 polarisation parameters + degree of polarisation.

$$d(\rho) = \sqrt{\sum_{L=1}^{2j} \sum_{M=-L}^{L} (r_{M}^{L})^{2}}$$

More matter than anti-matter in the Universe –why?

- As much matter/baryons as anti-matter/anti-baryons, should have been created in the Big Bang.
- Where did the anti-baryons go ("Baryogenesis")?

The Sakharov criteria:

- There must be processes that do not conserve baryon number.
- There must be processes that violate CP-symmetry
- These processes must have occurred outside thermal equilibrium

The Sakharov criteria:

- There must be processes that do not conserve baryon number.
- There must be processes that violate CP-symmetry
- These processes must have occurred outside thermal equilibrium

- Standard Model CP violation too small to explain asymmetry
- CP violation beyond SM never observed for baryons (LHCb observation within SM)
- The $\bar{p}p \rightarrow \bar{Y}Y$ process suitable for CP measurements (clean, no mixing)
- If CP valid, $\alpha = -\bar{\alpha}$ and $\beta = -\bar{\beta}$
- CP violation quantified by *e.g.*:

$$A = \frac{\alpha + \overline{\alpha}}{\alpha - \overline{\alpha}}$$

- A lot of data on $\overline{p}p \rightarrow \Lambda \Lambda$ near threshold, mainly from PS185 at LEAR*.
- Very scarce data bank above 4 GeV.
- Only a few bubble chamber events on $\overline{p}p \rightarrow \overline{\Xi}\Xi$
- No data on $\overline{p}p \to \overline{\Omega}\Omega$ nor $\overline{p}p \to \overline{\Lambda}_c\Lambda_c$

* See e.g. T. Johansson, AIP Conf. Proc. Of LEAP 2003, p. 95.

Time-line, hyperon physics with PANDA

- PANDA physics from **Day One**:
 - Single- and double strange hyperon spectroscopy.
 - Spin observables of single- and double strange hyperons.
- First years of PANDA:
 - Triple strange hyperon spectroscopy.
 - Polarisation parameters of Ω^{-} .
- Long-term projects with high luminosity:
 - Single charm baryon spectroscopy.
 - Spin observables of $\Lambda^+_{\ c}$.
 - CP violation in Λ and Ξ decays.

Questions for discussion

- Which decay asymmetry parameters of Λ, Ξ and Ω are known? Check the PDG and see what there is left to do!
- Why would PANDA be a good experiment for testing CP symmetry in hyperon decays?
- What are the main challenges for testing CP symmetry with PANDA?

Thanks to:

Stefan Leupold, Elisabetta Perotti, Tord Johansson, Erik Thomé and Walter Ikegami-Andersson.

Backup

₫,

Λ

Spin observables for spin $\frac{1}{2}$ hyperons

Method of Moments

The expectation value or the moment of a function g(x) can be written $\langle g(x) \rangle = \int_{\Omega} g(x) f(x \mid \theta) dx$

p where $f(x|\theta)$ is a probability density function.

Example: A hyperon with polarisation P_n decaying into $p \pi^2$. Then

$$f(\theta_p \mid P_n) = \frac{dN}{d\cos\theta_p} \propto 1 + \alpha_{\Lambda} P_n \cos\theta_p$$

and thus

$$\langle \cos \theta_p \rangle = \int \frac{dN}{d \cos \theta_p} \cos \theta_p d \cos \theta_p = \int (1 + \alpha_\Lambda P_n \cos \theta_p) \cos \theta_p d \cos \theta_p = \frac{\alpha_\Lambda P_n}{3}$$

which means that the polarisation can be expressed as $P_n = \frac{3}{\alpha_\Lambda} \langle \cos \theta_p \rangle$