

# Lecture 1: Hyperon Production and Spin Dynamics

PANDA lecture week, December 11-15, 2017

Karin Schönning, Uppsala University





# Outline

- Introduction
- Strangeness production
- What we have learned from hyperons
- Hyperon spin dynamics
- Spin observables in  $\bar{p}p \rightarrow \bar{Y}Y$
- The spin  $\frac{1}{2}$
- Questions for discussion









# Introduction

Missing in the Standard Model of particle physics:

A complete understanding of the strong interaction.

- Short distances pQCD rigorously and successfully tested.
- Charm scale and above: pQCD fails, no analytical solution possible.





## The mysterious nucleon

- Baryons are the simplest system for which the non-abelian nature of the strong interaction is manifest.
- Protons have been known for almost a century.
- Nucleons constitute the major part of the visible mass of the Universe.
- Yet, we don't understand them:
   The valence quarks only constitute ~1 % of the nucleon mass...



...and about 1/3 of the spine



#### Key question in hyperon physics:

What happens if we replace one of the light quarks in the proton with one - or many heavier quark(s)?







UNIVERSITET

# Strangeness production

- u,d scale: Non-perturbative interactions  $\rightarrow$  hadron degrees of freedom
- Strange scale: m<sub>s</sub> ≈ 100 MeV ~ Λ<sub>QCD</sub>≈ 200 MeV
  - $\rightarrow$  degrees of freedom unclear
  - $\rightarrow$  Probes QCD in the intermediate domain.
- Charm scale: *m<sub>c</sub>* ≈ 1300 MeV
  - $\rightarrow$  Quark and gluon degrees of freedom
  - $\rightarrow$  pQCD more relevant





Hyperon production at low/intermediate energies -QCD in confinement domain

- CP test

Hyperons / Strangeness provides a diagnostic tool for various studies of (mainly) non-pQCD.

Inclusive hyperon production

at high energies

- spin and flavour

of nucleons and

 $e^{-}, \overline{p}, X/$ 

 $e^+, p, N$ 

Hypernuclei -probes nucleon-hyperon and hyperon-hyperon potentials



Hyperon production in nign energyheavy ion collisionsphase transition to quark-gluon plasma?

Hyperon production at low/intermediate energies -QCD in confinement domain

- CP test

Hypernuclei -probes nucleon-hyperon and hyperon-hyperon potentials

Hyperons offer an additional degree of freedom

 $e^+, p, N$ 

 $e^{-}, \overline{p}, X$ 

Inclusive hyperon production at high energies - spin and flavour of nucleons and

Hyperons / Strangeness provides a diagnostic tool for various studies of (mainly) non-pQCD.

Hyperon production in nigh energy heavy ion collisions

- phase transition to quark-gluon plasma?



# Past: what did we learn from hyperons?





# Hyperons and the quark model

- 1950's and 1960's: a multitude of new particles discovered  $\rightarrow$  obvious they could not all be elementary.
- 1961: Eight-fold way, organising spin  $\frac{1}{2}$  baryons into octets and spin  $\frac{3}{2}$  into a decuplet as a consequence of SU(3) flavour symmetry.
- 1962: Discovery of the predicted Ω<sup>-</sup> demonstrates the success of the Eight-fold way.





#### Strange and charmed hyperons



SU(3):

- Approximately valid
- Octet and decuplet confirmed by experiment.

SU(4):

- Predicts two 20-plets
- Should not be a good symmetry  $(m_c >> m_{s,u,d})$ .
- Single charm (and one double) confirmed by experiment.



# Hyperons and the quark model

- The simple (constituent) quark model\* was successful in classifying hadrons and describing static properties of hadrons.
- Unable to explain *e.g.* 
  - Mass of the nucleon
  - Spin structure of the nucleon.
  - Flavour asymmetry of the nucleon sea.
  - Certain features of the light baryon spectrum\*\*.

\*PR 125 (1962) 1067 \*\*PRD 58 (1998) 094030



# Hyperon spin dynamics



# Or: what can we learn from looking into detail how known hyperons are produced?



#### Hyperons from *pp* and *pA* reactions

- Polarization a result of interfering amplitudes.
- In hadronic reactions, many contributing sub-processes.
- High energies: total polarization should be 0.
- Data: hyperons produced polarized at high energies
   → contrast to naïve expectations.
- Many contributing amplitudes

   → difficult to pinpoint the source<sub>0.2</sub>
   of polarisation.





# Hyperons from $\bar{p}p$ reactions

- Hyperons and anti-hyperons can be produced at low energies
   → fewer amplitudes contributing.
- Symmetry in hyperon and anti-hyperon observables.
- Polarisation + other spin observables powerful tools for testing models of production dynamics and structure.







# Hyperons from $\bar{p}p$ reactions













Available models based on

i) constituentquark-gluons\*

ii) hadrons\*\*

ii) a combination \*\*\*

\*PLB 179 (1986) 15; PLB 165 (1985) 187; NPA 468 (1985) 669; \_\*\* PR**C** 31(1985) 1857; PLB179 (1986) 15; PLB 214 (1988) 317; \*\*\* PLB 696 (2011) 352.



- The differential cross section of a  $\bar{p}p \rightarrow \bar{Y}Y$  process can be described in terms of
  - Spin observables
  - Decay asymmetries
  - Angles





- Spin observables powerful tool for testing models
- The differential cross section of a  $\overline{p}p \rightarrow \overline{Y}Y$  process can be described in terms of **Related to production**,
  - Spin observables
  - Decay asymmetries
  - Angles

Related to production, Depend on energy and Y scattering angle  $\theta$ .





- Spin observables powerful tool for testing models
- The differential cross section of a  $\bar{p}p \rightarrow \bar{Y}Y$  process can be described in terms of
  - Spin observables
  - Decay asymmetries
  - Angles

**Related to decay**,

independent of energy and  $\theta$ but depend on decay mode.





- Spin observables powerful tool for testing models
- The differential cross section of a  $\overline{p}p \rightarrow \overline{Y}Y$  process can be described in terms of **What we actually measure** 
  - Spin observables
  - Decay asymmetries

- Angles

What we actually measure and estimate parameters (spin observables, decay asymmetries) from.





- We need to find an expression that describes the full process
  - Production
  - Decay
- For this, we need the density matrix.





# The density matrix

A pure ensemble in quantum mechanics is described by the same ket  $|\Psi\rangle$ 

whereas a mixed sample is described by a sum of different kets, populated by amounts  $a_k : \sum_k a_k \Psi_i$ 

The expectation value of an observable E for a pure state is given by

 $\langle E \rangle = \langle \Psi | E | \Psi \rangle$ 

which in an orthonormal basis  $\{|a_k\rangle\}$  can be written

$$egin{aligned} \langle E 
angle &= \langle \Psi | \left( \sum_{k} |a_{k} 
angle \langle a_{k} | 
ight) E | \Psi 
angle &= \sum_{k} \langle \Psi | a_{k} 
angle \langle a_{k} | E | \Psi 
angle \langle \Psi | a_{k} 
angle = \mathrm{Tr} \left( E | \Psi 
angle \langle \Psi | 
angle \end{aligned}$$



## The density matrix

The density matrix is defined as  $\rho \equiv |\Psi\rangle\langle\Psi|$ meaning  $\langle E \rangle = Tr(\rho E)$ .

For a mixed state this can be generalized:

$$\rho \equiv \sum_{i} c_{i} |\Psi_{i}\rangle \langle \Psi_{i}|$$

$$\langle E \rangle = Tr(E \sum_{i} c_i |\Psi_i\rangle \langle \Psi_i|).$$



The density matrix of a particle with arbitrary spin *j* is given by

$$\rho = \frac{1}{2j+1} \mathscr{I} + \sum_{L=1}^{2j} \rho^L \quad \text{with} \quad \rho^L = \frac{2j}{2j+1} \sum_{M=-L}^{L} Q_M^L r_M^L$$

where  $Q_M^L$  are hermitian matrices and  $r_M^L$  polarisation parameters.

Spin  $\frac{1}{2}$ : 3 polarisation parameters (*L*=1, -*L* < *M* < *L*)

Spin  $\frac{3}{2}$ : 15 polarisation parameters (*L*=1, 2, 3, -L < M < L)



The spin density matrix of a spin  $\frac{1}{2}$  particle is given by:  $\rho(1/2) = \frac{1}{2}(\mathscr{I} + \bar{P} \cdot \bar{\sigma}) = \frac{1}{2} \begin{bmatrix} 1 + P_z & P_x + iP_y \\ P_x - iP_y & 1 - P_z \end{bmatrix}$ 

Symmetry from parity conservation (strong production) requires  $P_x = P_z = 0$ , which gives:

$$\rho(1/2) = \frac{1}{2} \begin{bmatrix} 1 & iP_y \\ -iP_y & 1 \end{bmatrix}$$



The spin density matrix of a spin  $\frac{1}{2}$  particle is given by:  $\rho(1/2) = \frac{1}{2}(\mathscr{I} + \bar{P} \cdot \bar{\sigma}) = \frac{1}{2} \begin{bmatrix} 1 + P_z & P_x + iP_y \\ P_x - iP_y & 1 - P_z \end{bmatrix}$ 

Symmetry from parity conservation (strong production) requires  $P_x = P_z = 0$ , which gives:

$$\rho(1/2) = \frac{1}{2} \begin{bmatrix} 1 & iP_y \\ -iP_y & 1 \end{bmatrix}$$

Polarisation normal to the production plane!



The spin observables of the full  $\bar{p}p \rightarrow \bar{Y}Y$  process can be obtained from the angular distributions of decay baryons, using

$$\rho^{\bar{B}B} = \frac{I_0^{\bar{Y}Y}}{16\pi} \sum_{\mu,\nu=0}^3 \sum_{i,j=0}^3 P_i^{\bar{p}} P_j^p \chi_{ij\mu\nu} T_{\bar{Y}} T_Y \sigma_\mu^1 \sigma_\nu^2 T_{\bar{Y}}^{\dagger} T_Y^{\dagger}$$

where  $P_i^{p}$  is the polarisation vectors of the initial proton, and





The spin observables of the full  $\bar{p}p \rightarrow \bar{Y}Y$  process can be obtained from the angular distributions of decay baryons, using

$$\rho^{\bar{B}B} = \frac{I_0^{\bar{Y}Y}}{16\pi} \sum_{\mu,\nu=0}^3 \sum_{i,j=0}^3 P_i^{\bar{p}} P_j^p \chi_{ij\mu\nu} T_{\bar{Y}} T_Y \sigma_\mu^1 \sigma_\nu^2 T_{\bar{Y}}^{\dagger} T_Y^{\dagger}$$

where  $P_i^{p}$  is the polarisation vectors of the initial proton, and

 $\chi_{ij\mu\nu} = \frac{\operatorname{Tr}(\sigma_{\mu}^{1}\sigma_{\nu}^{2}M\sigma_{i}^{1}\sigma_{j}^{2}M^{\dagger})}{\operatorname{Tr}(MM^{\dagger})} \quad \text{and} \quad I_{0}^{\bar{Y}Y} = \frac{1}{4}\operatorname{Tr}(MM^{\dagger})$ 

| Polarised Particle | None              | Beam              | Target         | Both           |
|--------------------|-------------------|-------------------|----------------|----------------|
| None               | $I_{0000}$        | A <sub>i000</sub> | $A_{0j00}$     | $A_{ij00}$     |
| Scattered          | $P_{00\mu0}$      | $D_{i0\mu0}$      | $K_{0j\mu0}$   | $M_{ij\mu0}$   |
| Recoil             | $P_{000\nu}$      | $K_{i00\nu}$      | $D_{0j0v}$     | $N_{ij0v}$     |
| Both               | C <sub>00µv</sub> | C <sub>i0µv</sub> | $C_{0j\mu\nu}$ | $C_{ij\mu\nu}$ |

- I angular distribution
- A analysing power
- P-polarisation
- D-depolarisation
- K polarisation transfer
- C spin correlations
- M, N spin corr. tensor



# Hyperon decays

• Define the *decay matrix T* such that:

 $|\Psi_f\rangle = T|\Psi_i\rangle$ 

- Recall  $\rho \equiv |\Psi\rangle\langle\Psi|$
- Then

$$\rho_f = T \rho_i T^{\mathsf{T}}$$

and the angular distribution is given by  $I(\theta, \varphi) = Tr(T\rho_i T^{\mathsf{T}})$ 



# Hyperon decays

For a spin  $\frac{1}{2}$  hyperon decaying into a spin  $\frac{1}{2}$  baryon and a spin 0 meson  $(\frac{1}{2} \rightarrow \frac{1}{2} 0)$ :

- Parity violating S state: amplitude  $T_s$
- Parity conserving P state: amplitude  $T_P$

Spin density matrix:

$$T(1/2 \rightarrow 1/2, 0) = \frac{1}{\sqrt{4\pi}} \begin{bmatrix} (T_s + T_p)(\cos\frac{\theta_p}{2}) & (T_s + T_p)e^{-i\phi_p}(\sin\frac{\theta_p}{2}) \\ (-T_s + T_p)e^{i\phi_p}(\sin\frac{\theta_p}{2}) & (T_s - T_p)(\cos\frac{\theta_p}{2}) \end{bmatrix}$$



#### Hyperon decays

Define *decay* asymmetry parameters:

 $\alpha = 2\text{Re}(T_s^*T_p)$  $\beta = 2\text{Im}(T_s^*T_p)$  $\gamma = |T_s|^2 - |T_p|^2$ 

 $\vec{P}_{y} \qquad \hat{P}_{y} \qquad \hat{X} \qquad$ 

and by construction  $\alpha^2 + \beta^2 + \gamma^2 = 1$ 

Then the decay angular distribution can be written

$$I(\theta,\phi) = \operatorname{Tr}(\rho(1/2)T^{\dagger}T(1/2 \to 1/2 \, 0)) = \frac{1}{4\pi}(1 + \alpha P_{y} \sin \theta \sin \phi)$$

or if integrating over  $\varphi$ :  $I(\cos \theta_p) = \frac{1}{4\pi} (1 + \alpha P_y \cos \theta_p)$ 



# Questions for discussion

- At the kinematic threshold, the polarisation must be 0. Give an argument why.
- At the PS185 experiment, the  $\bar{p}p \rightarrow \bar{\Lambda}\Lambda$  was studied with unpolarised beam and polarised target. Which spin observables could thus be extracted?
- With PANDA, we will have unpolarised beam and target. Which spin observables can then be extracted
  - If hyperons are studied inclusively?
  - If hyperons + antihyperons are studied exclusively?



The angular distribution is obtained by the trace

 $\mathit{I}_{0}^{\bar{\mathrm{B}}\mathrm{B}}=\mathrm{Tr}(\rho^{\bar{\mathrm{B}}\mathrm{B}})$ 

With an unpolarised beam and unpolarised taget this becomes

$$I_{\bar{B}B}(\Theta_{\bar{Y}},\hat{\bar{k}},\hat{k}) = \frac{I_0}{64\pi^3} \begin{pmatrix} 1 \\ +P_{\bar{Y},y}\bar{\alpha}\bar{k}_y + P_{Y,y}\alpha k_y \\ +C_{xx}\bar{\alpha}\alpha\bar{k}_x k_x \\ +C_{yy}\bar{\alpha}\alpha\bar{k}_y k_y \\ +C_{zz}\bar{\alpha}\alpha\bar{k}_z k_z \\ +C_{xz}\bar{\alpha}\alpha\bar{k}_z k_z \\ +C_{xz}\bar{\alpha}\alpha\bar{k}_z k_z \\ +C_{zx}\bar{\alpha}\alpha\bar{k}_z k_x \end{bmatrix}$$