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Introduction
Missing in the Standard Model of particle physics:

A complete understanding of the strong interaction.

• Short distances  

pQCD rigorously 

and successfully tested.

• Charm scale and above: 

pQCD fails, no analytical 

solution possible.



The mysterious nucleon

• Baryons are the simplest system for which the non-abelian 

nature of the strong interaction is manifest.

• Protons have been known for almost a century.

• Nucleons constitute the major part of the visible mass of the 

Universe.

• Yet, we don’t understand them:

The valence quarks only 

constitute ~1 % of 

the nucleon mass…           

…and about 1/3 of the spin! 6



What happens if 

we replace one of the 

light quarks in the proton 

with one - or many -

heavier quark(s)?

proton

Λ Σ0

Ξ- Ω-

Key question in hyperon physics:



Strangeness production

• u,d scale: Non-perturbative interactions  → hadron degrees of freedom

• Strange scale: ms ≈ 100 MeV ~  ΛQCD≈ 200 MeV

→ degrees of freedom unclear

→  Probes QCD in the intermediate domain.         

• Charm scale: mc ≈ 1300 MeV

→ Quark and gluon degrees of freedom

→ pQCD more relevant
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Hypernuclei
-probes nucleon-hyperon and
hyperon-hyperon potentials
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Hyperons / Strangeness 
provides a diagnostic 

tool  for various 
studies of (mainly) 

non-pQCD.

Hyperons offer an 
additional degree 

of freedom



Past: what did we learn from 

hyperons?



Hyperons and the quark model

• 1950’s and 1960’s: a multitude of new particles discovered → 

obvious they could not all be elementary.

• 1961: Eight-fold way, organising spin 
1

2
baryons into octets 

and spin 
3

2
into a decuplet as a consequence of SU(3) flavour

symmetry.

• 1962: Discovery of the predicted Ω- demonstrates the success 

of the Eight-fold way.

• 1964: Quark model (Gell-Mann and Zweig)



Strange and charmed hyperons

Spin      3

2



Spin      1

2



SU(3): 

- Approximately valid

- Octet and decuplet confirmed

by experiment.

SU(4):

- Predicts two 20-plets

- Should not be a good symmetry

(mc >> ms,u,d).

- Single charm (and one double) 

confirmed by experiment.



Hyperons and the quark model

• The simple (constituent) quark model* was successful in 

classifying hadrons and describing static properties of

hadrons.

• Unable to explain e.g.

– Mass of the nucleon

– Spin structure of the nucleon.

– Flavour asymmetry of the nucleon sea.

– Certain features of the light baryon spectrum**.

*PR 125 (1962) 1067
**PRD 58 (1998) 094030



Hyperon spin dynamics



Or: what can we learn from 

looking into detail how

known hyperons

are produced?



Hyperons from pp and pA reactions 

• Polarization a result of interfering amplitudes.

• In hadronic reactions, many contributing sub-processes.

• High energies: total polarization should be 0.

• Data: hyperons produced

polarized at high energies

→ contrast to naïve 

expectations.

• Many contributing amplitudes

→ difficult to pinpoint the source

of polarisation.

K. Heller, Colloque de Physique C6 (1990) 163



Hyperons from ҧ𝑝𝑝 reactions 

• Hyperons and anti-hyperons can be produced at low energies 

→ fewer amplitudes contributing.

• Symmetry in hyperon and anti-hyperon observables.

• Polarisation + other spin                                                      

observables powerful tools                                                      

for testing models of                                                                

production dynamics                                                                   

and structure. 

Figure from Phys. Rep. 368 (2002) 119.



*PLB 179 (1986) 15;  PLB 165 (1985) 187; 

NPA 468 (1985) 669;

** PRC 31(1985) 1857; PLB179 (1986) 15; 

PLB 214 (1988) 317;

*** PLB 696 (2011) 352.

Available models

based on 

i) constituent

quark-gluons*  

ii) hadrons**

ii) a combination ***



Spin observables in ҧ𝑝𝑝 → ത𝑌𝑌

• The differential cross section of a ҧ𝑝𝑝 → ത𝑌𝑌 process can 

be described in terms of

– Spin observables

– Decay asymmetries

– Angles
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Spin observables in ҧ𝑝𝑝 → ത𝑌𝑌

• Spin observables powerful tool for testing models 

• The differential cross section of a ҧ𝑝𝑝 → ത𝑌𝑌 process can 

be described in terms of

– Spin observables

– Decay asymmetries

– Angles

What we actually measure

and estimate parameters 

(spin observables, decay 

asymmetries) from.



Spin observables in ҧ𝑝𝑝 → ത𝑌𝑌

• We need to find an expression that describes the full 

process

– Production

– Decay 

• For this, we need the density matrix.



The density matrix

A pure ensemble in quantum mechanics is described by the 

same ket | ۧΨ

whereas a mixed sample is described by a sum of different kets, 

populated by amounts 𝑎𝑘 ∶ σ𝑘 𝑎𝑘Ψ𝑖

The expectation value of an observable E  for a pure state is 

given by

𝐸 = Ψ 𝐸 Ψ

which in an orthonormal basis ۧ|𝑎𝑘 can be written



The density matrix

The density matrix is defined as  𝜌 ≡ | ۧΨ |Ψۦ

meaning 𝐸 = 𝑇𝑟(𝜌𝐸).

For a mixed state this can be generalized:

𝜌 ≡ ෍

𝑖

𝑐𝑖 | ۧΨ𝑖 ൻΨ𝑖|

𝐸 = 𝑇𝑟(𝐸 σ𝑖 𝑐𝑖 | ۧΨ𝑖 ൻΨ𝑖|).



The density matrix of a particle with arbitrary spin j is given 

by

with

where QM
L are hermitian matrices  and rM

L polarisation 

parameters.

Spin 
1

2
: 3 polarisation parameters (L=1, -L < M < L)

Spin 
3

2
: 15 polarisation parameters (L=1, 2, 3,  -L < M < L)

Spin observables in ҧ𝑝𝑝 → ത𝑌𝑌



Spin observables in ҧ𝑝𝑝 → ത𝑌𝑌

x = m
y = n
z = l

Spin
𝟏

𝟐
case :

QM
L = Pauli 

matrices.

The spin density matrix of a spin 
1

2
particle is given by:

Symmetry from parity conservation (strong production) 

requires Px = Pz = 0 , which gives:



x = m
y = n
z = l

Spin
𝟏

𝟐
case :

QM
L = Pauli 

matrices.

The spin density matrix of a spin 
1

2
particle is given by:

Symmetry from parity conservation (strong production) 

requires Px = Pz = 0 , which gives:
Polarisation normal
to the production 

plane!

Spin observables in ҧ𝑝𝑝 → ത𝑌𝑌



The spin observables of the full ҧ𝑝𝑝 → ത𝑌𝑌 process can be obtained 

from the angular distributions of decay baryons, using

where Pj
p is the polarisation vectors of the initial proton, and

and

256 spin variables unpolarised angular distribution

Spin observables in ҧ𝑝𝑝 → ത𝑌𝑌



The spin observables of the full ҧ𝑝𝑝 → ത𝑌𝑌 process can be obtained 

from the angular distributions of decay baryons, using

where Pj
p is the polarisation vectors of the initial proton, and

and

I – angular distribution

A – analysing power

P – polarisation

D – depolarisation

K – polarisation transfer

C – spin correlations

M, N – spin corr. tensor

Spin observables in ҧ𝑝𝑝 → ത𝑌𝑌



Hyperon decays

• Define the decay matrix T such that:

| ൿΨ𝑓 = 𝑇| ۧΨ𝑖

• Recall 𝜌 ≡ | ۧΨ |Ψۦ

• Then

𝜌𝑓 = 𝑇𝜌𝑖𝑇⊺

and the angular distribution is given by 

𝐼(𝜃, 𝜑) = 𝑇𝑟(𝑇𝜌𝑖𝑇⊺)



Hyperon decays

For a spin 
1

2
hyperon decaying into a spin 

1

2
baryon and a 

spin 0 meson (
1

2
→

1

2
0):

– Parity violating S state: amplitude 𝑇𝑠

– Parity conserving P state: amplitude 𝑇𝑃

Spin density matrix:



Hyperon decays

Define decay asymmetry parameters:

and by construction 𝛼2 + 𝛽2 + 𝛾2 = 1

Then the decay angular distribution can 

be written

or if integrating over 𝜑 :



Questions for discussion

• At the kinematic threshold, the polarisation must be 0. 

Give an argument why.

• At the PS185 experiment, the ҧ𝑝𝑝 → ഥΛΛ was studied with 

unpolarised beam and polarised target. Which spin 

observables could thus be extracted?

• With PANDA, we will have unpolarised beam and target. 

Which spin observables can then be extracted

– If hyperons are studied inclusively?

– If hyperons + antihyperons are studied exclusively?



Spin observables in ҧ𝑝𝑝 → ത𝑌𝑌

The angular distribution is obtained by the trace                          

With an unpolarised beam and unpolarised taget this 

becomes


