

Lecture series on Exotic Mesons Part I: Effective Field theories and their application to $D_s(2317)$

Christoph Hanhart

Forschungszentrum Jülich

Lecture series on Exotic Mesons Part I: Effective Field theories and their application to $D_{s}(2317)$ – p. 1/20

Setting the stage ...

- → While QCD gets perturbative at large energies, it is non-perturbative at low energies
- \rightarrow Quarks are confined
- → Spectroscopy is the method of choice to investigate the inner workings of QCD and the formation of matter
- → Although overall providing a good general understanding the quark model has certain short comings
- $\rightarrow\,$ The physics of light and heavy quarks is rather different

Effective field theories

Weinberg 1979

- → Precondition: separation of scales low vs. high energy dynamics
 - ▷ low-energy dynamics in terms of relevant dof's: $E \sim p \sim Q$

- \rightarrow Small parameter(s) & power counting
 - \triangleright Standard QFT: trees + loops \rightarrow renormalization
 - ▷ Expansion in powers of Q over the large scale $M = \sum_{\nu} (Q/\Lambda)^{\nu} f(Q/\mu, C_i)$
 - μ : regularization scale; C_i : low–energy constants ν bounded from below \rightarrow controlled expansion

Limiting cases of QCD

$$\mathcal{L}_{\text{QCD}} = \sum_{f} \bar{q}_{f} \left(\gamma_{\mu} D^{\mu} - m_{f} \right) q_{f} - \frac{1}{4T} \text{Tr} \left(F^{\mu\nu} F_{\mu\nu} \right)$$

Limit of massless Quarks

Weinberg/ Gasser, Leutwyler

$$\mathcal{L}_{\text{QCD}} = \bar{q}_L \left\{ i \partial \!\!\!/ + g \mathcal{A}^a t^a \right\} q_L + \bar{q}_R \left\{ i \partial \!\!\!/ + g \mathcal{A}^a t^a \right\} q_R + \mathcal{O}(m_f / \Lambda_{\text{QCD}})$$

L and R Quarks decouple + spontaneous symmetry breaking \rightarrow Chiral Perturbation Theory (ChPT)

Limit of infinitely Heavy Quarks

Isgur, Wise, Manohar, Caswell/Lepage

 $\mathcal{L}_{\text{QCD}} = \bar{q}_f \left\{ iv \cdot \partial + gv \cdot A^a t^a \right\} q_f + \mathcal{O}(\Lambda_{\text{QCD}}/m_f)$

Independent of Heavy Quark Spin and Flavour

→ Heavy Quark Effective Field Theory (HQEFT)

 \rightarrow Non-Relativistic QCD (NRQCD)

Chiral Perturbation Theory

- → Systematic expansion around $m_f = 0$ (f = u, d, (s))
- → Mass gap provided by
 spontaneous-symmetry breaking:
 → pions as Goldstonebosons
- → Finite quark masses as perturbations $\rightarrow m_{\pi}^2 \propto (m_u + m_d) \rightarrow m_{\pi}/M_N \ll 1$

 \rightarrow Example: $\pi\pi$ -isoscalar *s*-wave scattering length:

 $a_0 = (0.16 + 0.04 + 0.017) \pm 0.009$ at LO, NLO, N²LO Bijnens et al. PLB374(1996)210

Exp.: $a_0 = 0.221 \pm 0.006$ in excellent agreement

Batley et al. [NA48/2 Coll.] EPJC79(2010)635

Unitarization

Unitarity relation:
$$Im(t) = \sigma |t|^2$$
 with $\sigma = \sqrt{1 - 4m_{\pi}^2/s}$

- $\rightarrow\,$ Perturbative expansion consistent only to given order
- \rightarrow s-dependent terms quickly hit unitarity bound
- Solution: Unitarization \rightarrow can produce poles Truong, Dorado, Pelaez, Kaiser, Weise, Oller, Oset, Lutz, Kolomeitsev, Guo, Meißner, C.H., ... Different methods used (dep. needs to be clarified); \rightarrow universal picture emerges in many channels!
- **Example I:** $\pi\pi$ scattering from the Inverse Amplitude Method Idea: write unitarity as

$$\operatorname{Im}(t^{-1}) = -\sigma \quad \longrightarrow t = \frac{1}{\operatorname{Re}(t^{-1}) - i\sigma}$$

use ChPT to fix $\operatorname{Re}(t^{-1})$ to the required accuracy

Results

Using ChPT to NLO as input (parameters $\times 10^3$ at $\mu = m_{\rho}$)

 $l_3^r = 0.18 \pm 1.11$; $l_4^r = 6.17 \pm 1.39$ from the literature

Colangelo et al. (2001) & Colangelo et al. (2010)

 $l_1^r = -3.7 \pm 0.2$; $l_2^r = 4.3 \pm 0.4$ fit to the data

Nebreda et al. (2011)

What does this tell about the nature of $f_0(500)$ and $\rho(770)$?

An interesting limit of QCD is $N_c \rightarrow \infty$, while $g_s^2 N_c = const$.

 $\rightarrow N_c$ -scaling of low energy constants known

 $\rightarrow N_C$ scaling for states: Cohen et al. PRD90(2014)036003

$$\stackrel{\overline{q}q:}{M} \sim \mathcal{O}(1); \ \Gamma \sim \mathcal{O}(1/N_c)$$

 $\stackrel{\overline{q}\overline{q}qq:}{M \sim \mathcal{O}(1); \ \Gamma \sim \mathcal{O}(1/N_c) }$

▷ gg: $M \sim \mathcal{O}(1); \ \Gamma \sim \mathcal{O}(1/N_c^2)$

$$\triangleright (N_c - 1)\bar{q}q:$$

$$M \sim \mathcal{O}(N_c); \ \Gamma \sim \mathcal{O}(1)$$

 ρ, K^* consistent with $\bar{q}q$; σ, κ do not match to any \rightarrow rescattering?

e.g. Peris & de Rafael. PLB348(1995)539

see, e.g., Neubert Phys. Rep. 245(1994)259

One may derive from the QCD Lagrangian:

 $\mathcal{L}_{\text{QCD}} = \bar{q}_f \left\{ iv \cdot \partial + gv \cdot A^a t^a \right\} q_f + \mathcal{O}(\Lambda_{\text{QCD}}/m_f)$

At leading order interaction spin and flavor independent!

heavy quark spin and J_{light} of light quarks conserved independently

Terms at $\mathcal{O}(\Lambda_{\rm QCD}/m_f)$ contain

- \rightarrow kinetic energy of heavy quark
- → term breaking spin symmetry

Consequence: mesons form spin multiplets with

 $m_{D^*} - m_D \sim \Lambda_{QCD}$, $m_{B^*}^2 - m_B^2 \simeq m_{D^*}^2 - m_D^2$

which works nicely - also for excited states

 \rightarrow Amount of spin symmetry violation important diagnostic tool!

Example: Strange-Charm states

Lecture series on Exotic Mesons Part I: Effective Field theories and their application to $D_s(2317)$ – p. 10/20

Example: Strange-Charm states

Lecture series on Exotic Mesons Part I: Effective Field theories and their application to $D_{s}(2317)$ – p. 11/20

Hadronic Molecules

- \rightarrow are few-hadron states, bound by the strong force
- \rightarrow do exist: light nuclei. e.g. deuteron as pn & hypertriton as Λd bound state
- → are located typically close to relevant continuum threshold; e.g., for $E_B = m_1 + m_2 - M$ and $\gamma = \sqrt{2\mu E_B}$ > $E_B^{\text{deuteron}} = 2.22 \text{ MeV}$ ($\gamma = 45 \text{ MeV}$)
 - $\triangleright E_B^{\text{hypertriton}} = (0.13 \pm 0.05) \text{ MeV (to } \Lambda d) \qquad (\gamma = 13 \text{ MeV})$

 \rightarrow can be identified in observables (Weinberg compositeness):

$$\frac{g_{\text{eff}}^2}{4\pi} = \frac{4M^2\gamma}{\mu}(1-\lambda^2) \rightarrow a = -2\left(\frac{1-\lambda^2}{2-\lambda^2}\right)\frac{1}{\gamma}; \quad r = -\left(\frac{\lambda^2}{1-\lambda^2}\right)\frac{1}{\gamma}$$

where $(1 - \lambda^2)$ =probability to find molecular component in bound state wave function

Are there mesonic molecules?

Disclaimers

- \rightarrow The formalism presented is 'diagnostic' especially,
 - ▷ it does not allow for conclusions on the binding force
 - ▷ it allows one only to study individual states.
 - To go beyond that a dynamical model needs to be employed.
- → Quantitative interpretation gets lost when states get bound too deeply ('uncertainty' ~ Rγ); we propose to stick to 'the larger the coupling the more molecular the state'
 There are striking phenomenological implications from large couplings for they lead to
 - relations between seemingly unrelated reactions
 - ▷ rather specific, unusual line shapes.

Unitraized ChPT

Kolomeitsev/ Lutz PLBB582(2004)39; Guo et al. PLB641(2006)278 Gamermann et al. PRD76(2007)074016; Guo et al. PLB666(2008)251

$$\mathcal{L}^{(1)} = \mathcal{D}_{\mu} D \mathcal{D}^{\mu} D^{\dagger} - m_D^2 D D^{\dagger}$$

with $D = (D^0, D^+, D_s^+)$ denoting the *D*-mesons, and

$$\mathcal{D}_{\mu} = \partial_{\mu} + \frac{1}{2} \left(u^{\dagger} \partial_{\mu} u + u \partial_{\mu} u^{\dagger} \right)$$
 where $u = \exp \left(\frac{\sqrt{2}i\phi}{2F_{\pi}} \right)$

The Goldstone boson fields are collected in the matrix

$$\phi = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & \pi^+ & K^+ \\ \pi^- & -\frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & K^0 \\ K^- & \bar{K}^0 & -\frac{2}{\sqrt{6}}\eta \end{pmatrix}$$

LO potential parameter free; 1 regulator necessary At NLO 6 low energy constants enter

Heavy light Systems

- $\rightarrow \pi/K/\eta D/D_s$ scattering in ChPT to NLO unitarized
- \rightarrow controlled quark mass dependence

→ fit LECs to lattice data

Liu et al. PRD87(2013)014508

Interpretation

shaded band (dashed line): full result (best fit)

white band (solid line): $D_{s0}^{*}(2317)$ mass fixed to physical value

Liu et al. PRD87(2013)014508

Lattice: Mohler et al., PRL 11(2013)222001

$$D_{s0}^{*}(2317): a = g_{eff} \qquad g_{eff} + \mathcal{O}(1/\beta) \simeq \left(\frac{2\lambda^{2}}{1+\lambda^{2}}\right) \frac{-1}{\sqrt{2m_{K}E_{B}}}$$
$$a = -(1.05\pm0.36) \text{ fm for molecule } (\lambda^{2} = 1); \text{ smaller otherwise}$$

... and in the s = 0 sector

Keeping parameters fixed one gets:

Albaladejo et al., PLB767(2017)465; Lattice: Moir et al. JHEP1610(2016)011

 \rightarrow Poles for $m_{\pi} \simeq 391$ MeV: (2264, 0) MeV [000] & (2468, 113) MeV [110]

 \rightarrow Poles for $m_{\pi} = 139$ MeV: (2105, 102) MeV [100] & (2451, 134) MeV [110]

Questions $c\bar{q}$ nature of lowest lying 0^+ D state, $D_0^*(2400)$

Exp. Test: Hadronic decays

Faessler et al. PRD76(2007)014005; Lutz, Soyeur NPA813(2008)14; Guo et al., PLB666 (2008)251 Isospin breaking (drives decay) via quark masses and charges

- The same effective operators lead to
- \rightarrow mass differences, e.g.

$$m_{D^+} - m_{D^0} = \Delta m^{q} + \Delta m^{e.m.} = ((2.5 \pm 0.2) + (2.3 \pm 0.6)) \text{ MeV}$$

$$\pi^0 - \eta \text{ mixing} \longrightarrow \text{parameters fixed}$$

- → Isospin breaking scattering amplitude
 - ▷ e.g. $KD \rightarrow \pi^0 D_s$ predicted

Lecture series on Exotic MesonsPart I: Effective Field theories and their application to $D_{s}(2317)$ – p. 18/20

Hadronic width

Measurement of width is decisive, if D_{s0}^* is molecular or not Experiment needs very high resolution \rightarrow PANDA

- Various systematic approaches to QCD exist
- \rightarrow lattice QCD
- → Chiral perturbation theory
- \rightarrow Heavy quark effective field theory/ NRQCD
- \rightarrow Large N_c
- \rightarrow The Weinberg-analysis
- Especially analyses combining the methods, supplemented with high quality experiments promise deep insights into the inner workings of QCD
- Next lecture: The XYZ-story