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Non-rela6vis6c	limit	of	Dirac	equa6on:		g = 2

Experimental	measurement: ge = 2.0023193 . . .
gµ = 2.0023318 . . .
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99.994%	of	aμ	are	due	to	QED!
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Hadronic	contribu-ons	to	aμ	from	la:ce	QCD	
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Par6cle	with	charge	e	moving	in	a	magne6c	field:	

• Momentum	turns	with	cyclotron	frequency	ωC	

• Spin	turns	with	ωS
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with	frequency	ωa
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[Jegerlehner	&	Nyffeler,	Phys	Rep	477	(2009)	1]
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Measure	two	quan66es: !a, B

[Bargmann,	Michel	&	Telegdi		1959]
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[Bennet	et	al.,	Phys	Rev	D73	(2006)	072003]
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From	BNL	E821	to	Fermilab	E989
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aexp

µ = 116 592 089 (54)

stat

(33)

syst

· 10

�11

Total	precision	of	0.54	ppm,	dominated		by	sta6s6cs

Use	ho_er	beam	of	Fermilab	proton	booster:			8	GeV/c

Suppress	pion	background	—	longer	pion	decay	channel

BNL:		80	m						—>							Fermilab:		2	km	

Aim	for	100	ppb		sta6s6cal	and	100	ppb		systema6c	error

—>			0.14	ppm		total	error

Transport	BNL	storage	ring	to	Fermilab
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Re-assembly	of	the	storage	ring

[©B.	Lee	Roberts]
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QED	contribu6on	has	been	worked	out	in	perturba6on	theory	to	
5th	order	in	α

Order	α				(1-loop)
γ

γ

ℓℓ

Order	α2			(2-loop)

1) 2) 3)

4) 5) 6)

7) 8) 9)
γ γµ e τ

µ

γ
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We report the result of our calculation of the complete tenth-order QED terms of the muon g! 2. Our
result is að10Þ! ¼ 753:29 (1.04) in units of ð"=#Þ5, which is about 4.5 s.d. larger than the leading-

logarithmic estimate 663(20). We also improve the precision of the eighth-order QED term of a!,
obtaining að8Þ! ¼ 130:8794 (63) in units of ð"=#Þ4. The new QED contribution is a!ðQEDÞ ¼
116 584 718 951 ð80Þ % 10!14, which does not resolve the existing discrepancy between the standard-

model prediction and measurement of a!.

DOI: 10.1103/PhysRevLett.109.111808 PACS numbers: 13.40.Em, 12.20.Ds, 14.60.Ef

The anomalous magnetic moment a! of the muon has
been studied extensively both experimentally and theoreti-
cally since it provides one of the promising paths in
exploring possible new physics beyond the standard model.
For this purpose it is crucial to know the prediction of the
standard model as precisely as possible.

On the experimental side the current world average of
the measured a! is [1,2]:

a!ðexpÞ ¼ 116 592 089 ð63Þ % 10!11 ½0:5 ppm': (1)

New experiments designed to improve the precision further
are being prepared at Fermilab [3] and J-PARC [4].

In the standard model, a! can be divided into electro-
magnetic, hadronic, and electroweak contributions

a! ¼ a!ðQEDÞ þ a!ðhadronicÞ þ a!ðelectroweakÞ: (2)

At present a! (hadronic) is the largest source of theoretical
uncertainty. The uncertainty comes mostly from the Oð"2Þ
hadronic vacuum-polarization (v.p.) term, " being the
fine-structure constant. The lattice QCD simulations
have attempted to evaluate this contribution [5–10]. At
present, most accurate evaluations must rely on the
experimental information. Three types of measurements
are available for this purpose: (1) eþe! ! hadrons,
(2) $) ! %þ #) þ #0, (3) eþe! ! &þ hadrons.
These processes have been investigated intensely by
many groups [11–13]. We list here one of them [13]:

a!ðhad:v:p:Þ¼6949:1ð37:2Þexpð21:0Þrad%10!11; (3)

which overlaps other values based on the eþe! data [11,12]
and makes the standard-model prediction closest to the
experiment (1). The next-to-leading-order (NLO) hadronic
vacuum-polarization contribution is also known [13]:

a!ðNLO had:v:p:Þ ¼ !98:4ð0:6Þexpð0:4Þrad % 10!11: (4)

The hadronic light-by-light scattering contribution (l-l) is
of similar size as a! (NLO had.v.p.), but has a much larger
theoretical uncertainty [14–17]

a!ðhad:l-lÞ ¼ 116ð40Þ % 10!11; (5)

where the uncertainty 40% 10!11 covers almost all values
obtained in different publications.
The electroweak contribution has been calculated up to

2-loop order [18–21]:

a!ðweakÞ ¼ 154ð2Þ % 10!11: (6)

Since this uncertainty is 30 times smaller than the experi-
mental precision of (1), it can be regarded as known
precisely.
The primary purpose of this letter is to report the com-

plete numerical evaluation of all tenth-order QED contri-
bution to a!. It leads to a sizable reduction of the
uncertainty of the previous estimate by the leading-log
approximations [22,23]. We have also improved the nu-
merical precision of the eighth-order QED contribution
including the newly evaluated tau-lepton contribution.
Together they represent a significant reduction in the theo-
retical uncertainty of the QED part of a!.
The QED contribution to a! can be evaluated by the

perturbative expansion in "=#:

a!ðQEDÞ ¼
X1

n¼1

!
"

#

"
n
að2nÞ! ; (7)

where að2nÞ! is finite thanks to the renormalizability of QED
and can be written as

að2nÞ! ¼ Að2nÞ
1 þ Að2nÞ

2 ðm!=meÞ þ Að2nÞ
2 ðm!=m$Þ

þ Að2nÞ
3 ðm!=me;m!=m$Þ: (8)

PRL 109, 111808 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

14 SEPTEMBER 2012

0031-9007=12=109(11)=111808(4) 111808-1 ! 2012 American Physical Society
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III IV(a) IV(b) IV(c) IV(d) V

FIG. 1. Vertex diagrams representing 13 gauge-invariant
subsets contributing to the lepton g − 2 at the eighth-order.
Solid and wavy lines represent lepton and photon lines, re-
spectively.

Mass dependence is known analytically for A(2n)
2 and

A(2n)
3 for n = 2, 3 [28–32]. We reevaluated them us-

ing the latest values of the muon-electron mass ratio
mµ/me = 206.768 2843 (52) and/or the muon-tau mass
ratio mµ/mτ = 5.946 49 (54) × 10−2 [33]. In the same
order of terms as shown on the right-hand-side of (8), the
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a(2)µ = 0.5,

a(4)
µ

= −0.328 478 965 579 . . .+ 1.094 258 312 0 (83)

+ 0.780 79 (15)× 10−4

= 0.765 857 425 (17) ,

a(6)µ = 1.181 241 456 . . .+ 22.868 380 04 (23)

+ 0.360 70 (13)× 10−3 + 0.527 76 (11)× 10−3

= 24.050 509 96 (32) . (9)

The value of a(8)µ has been obtained mostly by nu-
merical integration [34–36]. They arise from 13 gauge-
invariant sets whose representative diagrams are shown
in Fig. 1. We have reevaluated some of them for further
check and improvement of numerical precision. The re-
sults for the mass-dependent terms are summarized in
Table I.
From the data listed in Table I and the value of A(8)

1

from Refs. [35–37], we obtain the following value for the

TABLE I. The eighth-order mass-dependent QED contribu-
tion from 12 gauge-invariant groups to muon g− 2, whose
representatives are shown in Fig. 1. The mass-dependence of
A(8)

3 is A(8)
3 (mµ/me,mµ/mτ ).

group A(8)
2 (mµ/me) A(8)

2 (mµ/mτ ) A(8)
3

I(a) 7.74547 (42) 0.000032 (0) 0.003209 (0)
I(b) 7.58201 (71) 0.000252 (0) 0.002611 (0)
I(c) 1.624307 (40) 0.000737 (0) 0.001807 (0)
I(d) −0.22982 (37) 0.000368 (0) 0
II(a) −2.77888 (38) −0.007329 (1) 0
II(b) −4.55277 (30) −0.002036 (0) −0.009008 (1)
II(c) −9.34180 (83) −0.005246 (1) −0.019642 (2)
III 10.7934 (27) 0.04504 (14) 0
IV(a) 123.78551 (44) 0.038513 (11) 0.083739 (36)
IV(b) −0.4170 (37) 0.006106 (31) 0
IV(c) 2.9072 (44) −0.01823 (11) 0
IV(d) −4.43243 (58) −0.015868 (37) 0

I(a) I(b) I(c) I(d) I(e)

I(f) I(g) I(h) I(i) I(j)

II(a) II(b) II(c) II(d) II(e)

II(f) III(a) III(b) III(c) IV

V VI(a) VI(b) VI(c) VI(d) VI(e)

VI(f) VI(g) VI(h) VI(i) VI(j) VI(k)

FIG. 2. Self-energy-like diagrams representing 32 gauge-
invariant subsets contributing to the lepton g−2 at the tenth
order. Solid lines represent lepton lines propagating in a weak
magnetic field.

eighth-order QED contribution a(8)µ :

a(8)
µ

= −1.9106 (20) + 132.685 2 (60)

+ 0.042 34 (12) + 0.062 72 (4)

= 130.879 6 (63). (10)

Over the period of more than nine years we have nu-
merically evaluated all 32 gauge-invariant sets of dia-

grams that contribute to a(10)µ [22, 37–40], whose rep-
resentative diagrams are shown in Fig. 2. The results
for mass-dependent terms are summarized in Table II.
Some simple diagrams were evaluated analytically or in
the asymptotic expansion in mµ/me [41–45]. The results
are consistent with our numerical ones.
From the data listed in this Table and the value of

A(10)
1 from Ref. [37], we obtain the complete tenth-order

result:

a(10)µ = 9.168 (571) + 742.18 (87)− 0.068 (5) + 2.011 (10)

= 753.29 (1.04). (11)

The uncertainty 1.04 is attributed entirely to the statis-
tical fluctuation in the Monte-Carlo integration of Feyn-
man amplitudes by VEGAS [46]. This is 20 times more
precise than the previous estimate, 663 (20), obtained
in the leading-logarithmic approximation [22]. This is
mainly because we had underestimated the magnitude of
the contribution of the Set III(a). Note also that (11) is
about 4.5 s.d. larger than the leading-log estimate. The

numerical values of (α/π)(n)a(2n)µ for n = 1, 2, · · · , 5 are
summarized in Table III.
In order to evaluate aµ(QED) using (7), a precise value

of α is needed. At present, the best non-QED α is the
one obtained from the measurement of h/mRb [47], com-
bined with the very precisely known Rydberg constant
and mRb/me [33]:

α−1(Rb) = 137.035 999 049 (90) [0.66 ppb]. (12)
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I have evaluated up to 1100 digits of precision the contribution of the 891 4-loop Feynman diagrams 
contributing to the electron g-2 in QED. The total mass-independent 4-loop contribution is

ae = −1.912245764926445574152647167439830054060873390658725345. . .
( α

π

)4
.

I have fit a semi-analytical expression to the numerical value. The expression contains harmonic 
polylogarithms of argument e

iπ
3 , e

2iπ
3 , e

iπ
2 , one-dimensional integrals of products of complete elliptic 

integrals and six finite parts of master integrals, evaluated up to 4800 digits.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

I have evaluated up to 1100 digits of precision the mass-independent contribution to the electron g-2 anomaly of all the 891 diagrams 
in 4-loop QED, thus finalizing a twenty-year effort [1–7] begun after the completion of the calculation of 3-loop QED contribution [8].

Having extracted the power of the fine structure constant α

ae(4-loop) = a(4)
e

( α

π

)4
, (1)

the first digits of the result are

a(4)
e = −1.912245764926445574152647167439830054060873390658725345171329848. . . . (2)

The full-precision result is shown in Table 1. The result (2) is in excellent agreement (0.9σ ) with the numerical value

a(4)
e (Ref. [18]) = −1.91298(84) , (3)

latest result of a really impressive pluridecennial effort [9–18].
By using the best numerical value of ae(5-loop) = 7.795(336)

( α
π

)5 (Ref. [18]), the measurement of the fine structure constant [19]

α−1 = 137.035 999 040(90) ,

and the values of mass-dependent QED, hadronic and electroweak contributions (see Ref. [18] and references therein), one finds

ath
e = 1 159 652 181.664(23)(16)(763) × 10−12 , (4)

where the first error comes from a(5)
e , the second one from the hadronic and electroweak corrections, the last one from α. Conversely, 

using the experimental measurement of ae [20]

aexp
e = 1 159 652 180.73(0.28) × 10−12 ,
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(g − 2)µ: photonic contr. and µ loops
[Marquard,Smirnov,Smirnov, [Laporta’17] [Aoyama,Hayakawa,

Steinhauser,Wellmann] [Kinoshita,Nio’12]

−2.161 ± 0.065 −2.1755 ± 0.0020

−2.176866027739540077443259355895893938670

0.077 ± 0.031 0.05596 ± 0.0001

0.05611089989782836483146927441890884223

−0.3048 ± 0.021 −0.3162 ± 0.0002

−0.31653839064894015884326038238151328482

−0.07461 ± 0.00008 −0.074665 ± 0.000005

−0.0746711843261055138601599657227931268

0.597204 ± 0.0012 0.598838 ± 0.000019

0.598842072031421820464649513201747727836

0.000876865 . . . 0.000876865 . . .

0.000876865858889990697913748939713726165

Matthias Steinhauser — 4 loop QED corrections to (g − 2)µ 13
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While the Bhabha process requires to sort out the s channel from the t channel, the pure t channel
reaction of µ�e� scattering µ�(p�) e�(q�)! µ�(p0�) e�(q0�) provides a much simpler setup and could
be realized as a fixed target experiment [63] at existing facilities. The leading order cross–section in
this case has the simple form

d�unpol.
µ�e�!µ�e�

dt
= 4⇡↵(t)2 1

�(s,m2
e ,m2

µ)

8

>

>

>

<

>

>

>

:

⇣

s � m2
µ � m2

e

⌘2

t2 +
s
t
+

1
2

9

>

>

>

=

>

>

>

;

, (12)

exhibiting the e↵ective charge as an overall factor. For details see Luca Trentadue’s Contribution.
Such an experiment would provide data for the Euclidean electromagnetic current correlator⇧0�(Q2)�
⇧0�(0) = ��↵had(�Q2) = ↵

↵(�Q2) + �↵
lep(�Q2) � 1 and would allow for a directly check of lattice

QCD data. In addition one could determine �↵had
⇣

�Q2
⌘

at Q ⇡ 2.5GeV by this method (one single
number!) as the non-perturbative part of �↵had

⇣

M2
Z

⌘

= �↵had
⇣

�Q2
⌘

+ pert. when evaluated in “Adler
function” approach advocated in [64].

8 Theory confronts experiment

Table 3. Standard model theory and experiment comparison [in units 10�10].

Contribution Value Error Reference

QED incl. 4-loops+5-loops 11 658 471 . 8851 0 . 036 Remiddi, Kinoshita et al.
Leading hadronic vac. pol. 688 . 77 3 . 38 data-driven e+e� + ⌧
Subleading hadronic vac. pol. -9 . 927 0 . 072 2016 update
NNLO hadronic vac. pol. 1 . 224 0 . 010 [31]
Hadronic light–by–light 10 . 34 2 . 88 [46, 69]
Weak incl. 2-loops 15 . 36 0 . 11 [11, 70]

Theory 11 659 177 . 6 4 . 4 –
Experiment 11 659 209 . 1 6 . 3 [2] updated
Exp.- The. 4.1 standard deviations 31 . 3 7 . 7 –

Table 3 summarizes the present status of the SM prediction for aµ in comparison with the ex-
perimental value [2]. For a recent update of the weak contribution see [70]. As an estimate based
on [4–6, 10, 46, 65, 68, 69] we adopt ⇡0, ⌘, ⌘0 [95 ± 12] + axial–vector [8 ± 3] + scalar [�6 ± 1] +
⇡,K loops [�20 ± 5] + quark loops [22 ± 4] + tensor [1 ± 0] + NLO [3 ± 2] which yields

a(6)
µ (lbl, had) = (103 ± 29) ⇥ 10�11 . (13)

The result di↵ers little from the “agreed” value (105 ± 26) ⇥ 10�11 presented in [47] and (116 ±
39) ⇥ 10�11 estimated in [46]. Both included a wrong, too large, Landau-Yang theorem violating
axial–vector contribution from [10], correcting for this we obtain our reduced value relative to [46].

[Jegerlehner,	arXiv:1705.00263]
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aµ in units 10−11

10−3 10−1 101 103 105 107 109

FNAL BNL CERN ICERN IICERN III
2017 2004 196119681976

LO

4th

QED 6th

8th

10th

hadronic VP LO

NLO

NNLO

hadronic LbL

weak LO

HO

New Physics ?

SM prediction

???

SM predictions
SM uncertainty

δHVP

δHLbL

[Jegerlehner,	arXiv:1705.00263]

Experimental	sensi6vity	of	E989	exceeds	total	theory	uncertainty	by	far!
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Hadronic	vacuum	polarisa-on: Hadronic	light-by-light	scaZering:

Dispersion	theory: Model	es6mates:

(combined	e+e–	and	τ	data) “Glasgow	consensus”

ahlbl
µ = (105 ± 26) · 10�11ahvp

µ = (6888 ± 34) · 10�11
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Hadronic	electromagne6c	current:

J

µ(x) = 2
3 ū�µu � 1

3 d̄�µd � 1
3 s̄�µs + 2

3 c̄�µc + . . .

ahvp

µ =
✓↵mµ

3⇡

◆
2

Z 1
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ds
R

had

(s)

ˆK(s)

s2

, R
had

(s) = �(e+e� ! hadrons)

,
4⇡↵(s)

(3s)
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Hadronic	electromagne6c	current:
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Hadronic	electromagne6c	current:

J

µ(x) = 2
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Knowledge	of	Rhad(s)	required	down	to	pion	threshold

ahvp
µ =

✓↵mµ
3⇡

◆2
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cut
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ds
Rdata

had (s) K̂(s)
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9>>=
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Use	experimental	data	for	cross	sec6on	ra6o	Rhad(s)
636 BESIII Collaboration / Physics Letters B 753 (2016) 629–638

Fig. 4. The measured squared pion form factor |Fπ |2. Only statistical errors are 
shown. The solid line represents the fit using the Gounaris–Sakurai parametriza-
tion.

Table 3
Fit parameters and statistical errors of the Gounaris–Sakurai fit of the pion form 
factor. Also shown are the PDG 2014 values [33].

Parameter BESIII value PDG 2014

mρ [MeV/c2] 776.0 ± 0.4 775.26 ± 0.25
#ρ [MeV] 151.7 ± 0.7 147.8± 0.9
mω [MeV/c2] 782.2 ± 0.6 782.65 ± 0.12
#ω [MeV] fixed to PDG 8.49 ± 0.08
|cω | [10−3] 1.7± 0.2 –
|φω | [rad] 0.04 ± 0.13 –

Fig. 5. Relative difference of the form factor squared from BaBar [10] and the BESIII
fit. Statistical and systematic uncertainties are included in the data points. The 
width of the BESIII band shows the systematic uncertainty only.

Wigner function cω = |cω|eiφω . The width of the ω meson is fixed 
to the PDG value [33]. The resulting values are shown in Table 3. 
As can be seen, the resonance parameters are in agreement with 
the PDG values [33] within uncertainties, except for #ρ , which 
shows a 3.4σ deviation. Corresponding amplitudes for the higher 
ρ states, ρ(1450), ρ(1700), and ρ(2150), as well as the masses 
and widths of those states were taken from Ref. [10], and the sys-
tematic uncertainty in #ρ due to these assumptions has not been 
quantitatively evaluated.

The Gounaris–Sakurai fit provides an excellent description of 
the BESIII data in the full mass range from 600 to 900 MeV/c2, re-
sulting in χ2/ndf = 49.1/56. Fig. 5 shows the difference between 
fit and data. Here the data points show the statistical uncertainties 
only, while the shaded error band of the fit shows the systematic 
uncertainty only.

Fig. 6. Relative difference of the form factor squared from KLOE [6–8] and the 
BESIII fit. Statistical and systematic uncertainties are included in the data points. 
The width of the BESIII band shows the systematic uncertainty only.

In order to compare the result with previous measurements, 
the relative difference of the BESIII fit and data from BaBar [10], 
KLOE [6–8], CMD2 [1,2], and SND [3] is investigated. Such a com-
parison is complicated by the fact, that previous measurements 
used different vacuum polarization corrections. Therefore, we con-
sistently used the vacuum polarization correction from Ref. [31]
for all the comparisons discussed in this section. The KLOE 08, 10, 
12, and BaBar spectra have, hence, been modified accordingly. The 
individual comparisons are illustrated in Figs. 5 and 6. Here, the 
shaded error band of the fit includes the systematic error only, 
while the uncertainties of the data points include the sum of the 
statistical and systematic errors. We observe a very good agree-
ment with the KLOE 08 and KLOE 12 data sets up to the mass 
range of the ρ–ω interference. In the same mass range the BaBar 
and KLOE 10 data sets show a systematic shift, however, the devia-
tion is, not exceeding 1 to 2 standard deviations. At higher masses, 
the statistical error bars in the case of BESIII are relatively large, 
such that a comparison is not conclusive. There seem to be a good 
agreement with the BaBar data, while a large deviation with all 
three KLOE data sets is visible. There are indications that the BE-
SIII data and BESIII fit show some disagreement in the low mass 
and very high mass tails as well. We have also compared our re-
sults in the ρ peak region with data from Novosibirsk. At lower 
and higher masses, the statistical uncertainties of the Novosibirsk 
results are too large to draw definite conclusions. The spectra from 
SND and from the 2006 publication of CMD-2 are found to be in 
very good agreement with BESIII in the ρ peak region, while the 
2004 result of CMD-2 shows a systematic deviation of a few per-
cent.

We also compute the contribution of our BESIII cross section 
measurement σ bare(e+e− → π+π−(γFSR)) to the hadronic contri-
bution of (g − 2)µ ,

aππ ,LO
µ (0.6–0.9 GeV) = 1

4π3

(0.9GeV)2∫

(0.6GeV)2

ds′K (s′)σ bare
ππ(γ ) , (8)

where K (s′) is the kernel function [11, Eq. (5)]. As summarized in 
Fig. 7, the BESIII result, aππ ,LO

µ (600–900 MeV) = (368.2 ± 2.5stat ±
3.3sys) · 10−10, is found to be in good agreement with all three 
KLOE values. A difference of about 1.7σ with respect to the BaBar 
result is observed.

[BESIII	CollaboraWon,	2016]

γ

e−

e+

γ hard

s = M2
φ; s′ = s (1 − k), k = Eγ/Ebeam

π+π−, ρ0φ hadrons

b)a)

Ini6al	state	radia6on	(ISR)	vs.	beam	energy	tuning:

[Jegerlehner,	arXiv:1705.00263]
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Fig. 4. The measured squared pion form factor |Fπ |2. Only statistical errors are 
shown. The solid line represents the fit using the Gounaris–Sakurai parametriza-
tion.

Table 3
Fit parameters and statistical errors of the Gounaris–Sakurai fit of the pion form 
factor. Also shown are the PDG 2014 values [33].

Parameter BESIII value PDG 2014

mρ [MeV/c2] 776.0 ± 0.4 775.26 ± 0.25
#ρ [MeV] 151.7 ± 0.7 147.8± 0.9
mω [MeV/c2] 782.2 ± 0.6 782.65 ± 0.12
#ω [MeV] fixed to PDG 8.49 ± 0.08
|cω | [10−3] 1.7± 0.2 –
|φω | [rad] 0.04 ± 0.13 –

Fig. 5. Relative difference of the form factor squared from BaBar [10] and the BESIII
fit. Statistical and systematic uncertainties are included in the data points. The 
width of the BESIII band shows the systematic uncertainty only.

Wigner function cω = |cω|eiφω . The width of the ω meson is fixed 
to the PDG value [33]. The resulting values are shown in Table 3. 
As can be seen, the resonance parameters are in agreement with 
the PDG values [33] within uncertainties, except for #ρ , which 
shows a 3.4σ deviation. Corresponding amplitudes for the higher 
ρ states, ρ(1450), ρ(1700), and ρ(2150), as well as the masses 
and widths of those states were taken from Ref. [10], and the sys-
tematic uncertainty in #ρ due to these assumptions has not been 
quantitatively evaluated.

The Gounaris–Sakurai fit provides an excellent description of 
the BESIII data in the full mass range from 600 to 900 MeV/c2, re-
sulting in χ2/ndf = 49.1/56. Fig. 5 shows the difference between 
fit and data. Here the data points show the statistical uncertainties 
only, while the shaded error band of the fit shows the systematic 
uncertainty only.

Fig. 6. Relative difference of the form factor squared from KLOE [6–8] and the 
BESIII fit. Statistical and systematic uncertainties are included in the data points. 
The width of the BESIII band shows the systematic uncertainty only.

In order to compare the result with previous measurements, 
the relative difference of the BESIII fit and data from BaBar [10], 
KLOE [6–8], CMD2 [1,2], and SND [3] is investigated. Such a com-
parison is complicated by the fact, that previous measurements 
used different vacuum polarization corrections. Therefore, we con-
sistently used the vacuum polarization correction from Ref. [31]
for all the comparisons discussed in this section. The KLOE 08, 10, 
12, and BaBar spectra have, hence, been modified accordingly. The 
individual comparisons are illustrated in Figs. 5 and 6. Here, the 
shaded error band of the fit includes the systematic error only, 
while the uncertainties of the data points include the sum of the 
statistical and systematic errors. We observe a very good agree-
ment with the KLOE 08 and KLOE 12 data sets up to the mass 
range of the ρ–ω interference. In the same mass range the BaBar 
and KLOE 10 data sets show a systematic shift, however, the devia-
tion is, not exceeding 1 to 2 standard deviations. At higher masses, 
the statistical error bars in the case of BESIII are relatively large, 
such that a comparison is not conclusive. There seem to be a good 
agreement with the BaBar data, while a large deviation with all 
three KLOE data sets is visible. There are indications that the BE-
SIII data and BESIII fit show some disagreement in the low mass 
and very high mass tails as well. We have also compared our re-
sults in the ρ peak region with data from Novosibirsk. At lower 
and higher masses, the statistical uncertainties of the Novosibirsk 
results are too large to draw definite conclusions. The spectra from 
SND and from the 2006 publication of CMD-2 are found to be in 
very good agreement with BESIII in the ρ peak region, while the 
2004 result of CMD-2 shows a systematic deviation of a few per-
cent.

We also compute the contribution of our BESIII cross section 
measurement σ bare(e+e− → π+π−(γFSR)) to the hadronic contri-
bution of (g − 2)µ ,

aππ ,LO
µ (0.6–0.9 GeV) = 1

4π3

(0.9GeV)2∫

(0.6GeV)2

ds′K (s′)σ bare
ππ(γ ) , (8)

where K (s′) is the kernel function [11, Eq. (5)]. As summarized in 
Fig. 7, the BESIII result, aππ ,LO

µ (600–900 MeV) = (368.2 ± 2.5stat ±
3.3sys) · 10−10, is found to be in good agreement with all three 
KLOE values. A difference of about 1.7σ with respect to the BaBar 
result is observed.

[BESIII	CollaboraWon,	2016] [Jegerlehner,	arXiv:1705.00263]
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[Jegerlehner,	arXiv:1705.00263]
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[Jegerlehner,	arXiv:1705.00263]
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[Colangelo	et	al.,	2014	ff]

No	simple	dispersive	framework

Iden6fy	dominant	sub-processes,	e.g.

Individual	contribu6ons	es6mated	using	model	calcula6ons

Dispersive	formalism	set	up	for	various	subprocesses

Laice	QCD	calcula6ons
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Figure 1. The di↵erent contributions to HLbL scattering in the muon g�2 and their chiral and large-N
c

counting.

hadronic picture, the four-point function is decomposed into single-meson exchanges and loops of
hadrons, e.g. pions. Often the QCD short-distance part is modelled by a dressed constituent quark
loop, which raises issues of double counting. The couplings of the hadrons (and the constituent
quarks) to the photons involve, in general, momentum dependent vertex functions (form factors). The
di↵erent contributions have been classified in Ref. [20] according to their leading order in the chiral
expansion p

2 and their large-N
c

counting to bring some order and systematics into the calculations.
The relevant momentum scales in HLbL are around 0 � 2 GeV, i.e. in the non-perturbative res-

onance region of QCD. The QCD four-point function is, however, a very complicated object that in-
volves many Lorentz structures [8, 11] that depend on several invariant photon momenta with mixed
regions of small and large momenta. Therefore the distinction between low and high energies and the
use of an e↵ective field theory approach (chiral perturbation theory with hadronic resonances) at low
momenta and of perturbative QCD at high momenta is not so straightforward. So far only hadronic
models have been used to estimate the full HLbL contribution. A selection of these results and some
compilations, including those quoted in Eqs. (1) and (2), is shown in Table 1. One important di↵erence
between these two compilations is the combination of the errors of the individual contributions. They
are combined in quadrature in Ref. [5] and linearly in Refs. [1, 6], as was done in Ref. [8]. Since these
are model errors, not experimental uncertainties, both ways of combining them can be questioned.

The contribution from the light pseudoscalars ⇡0, ⌘, ⌘0 is numerically dominant according to most
model calculations. Because of this observation, there are many evaluations of this contribution, see
Refs. [1, 22, 23] and references therein. The central value is about a

HLbL;P
µ = 90 ⇥ 10�11 with a

spread for most calculations of about 15% (but 30% if the central values of all estimates are taken into
account), which can be understood by looking at the relevant momentum regions in a 3-dimensional
integral representation [1, 23], with model-independent weight functions that are peaked below 1 GeV
for the pion and below about 1.5 � 2 GeV for ⌘, ⌘0. As long as the transition form factors fall o↵ for
large momenta, one obtains always very similar results. In Ref. [10] a QCD short-distance constraint
from the operator product expansion (OPE) on the four-point function was derived by connecting it to
the chiral triangle anomaly. The constraint is then saturated by the pion-pole contribution alone which
is a model assumption. This leads to an increased value, since there is no pion transition form factor
at the external vertex, but then no quark-loop contribution should be added.

The other contributions to HLbL are, however, not negligible at the level of the precision goal of
(15�20)⇥10�11 needed to match future experiments. For the dressed pion-loop there is a strong model-
dependence, cf. the results obtained in Refs. [7, 8] as discussed in Refs. [10, 24]. There is also some

Dominant	hadronic	contribu6ons	to	ahlbl
µ



g–2	as	a	probe	for	new	physicsHartmut	Wittig

Hadronic	Light-by-Light	scaZering

28

[Nyffeler,	arXiv:1710.09742]

HLbL in muon g � 2: model calculations (continued)

Contribution BPP HKS, HK KN MV BP, MdRR PdRV N, JN

⇡0, ⌘, ⌘0 85±13 82.7±6.4 83±12 114±10 � 114±13 99 ± 16

axial vectors 2.5±1.0 1.7±1.7 � 22±5 � 15 ± 10 22 ± 5

scalars �6.8±2.0 � � � � �7±7 �7±2

⇡, K loops �19±13 �4.5±8.1 � � � �19±19 �19±13
⇡,K loops
+subl. N

C

� � � 0±10 � � �

quark loops 21±3 9.7±11.1 � � � 2.3 (c-quark) 21±3

Total 83±32 89.6±15.4 80±40 136±25 110±40 105 ± 26 116 ± 39

BPP = Bijnens, Pallante, Prades ’95, ’96, ’02; HKS = Hayakawa, Kinoshita, Sanda ’95, ’96; HK = Hayakawa, Kinoshita ’98, ’02; KN =
Knecht, AN ’02; MV = Melnikov, Vainshtein ’04; BP = Bijnens, Prades ’07; MdRR = Miller, de Rafael, Roberts ’07; PdRV = Prades, de
Rafael, Vainshtein ’09; N = AN ’09, JN = Jegerlehner, AN ’09

• PdRV (Glasgow consensus): Do not consider dressed light quark loops as
separate contribution. Assume it is already taken into account by using
short-distance constraint of MV ’04 on pseudoscalar-pole contribution (no form
factor at external vertex). Added all errors in quadrature.

• N, JN: New evaluation of pseudoscalar exchange contribution imposing new
short-distance constraint on o↵-shell form factors. Took over most values from
BPP, except axial vectors from MV. Added all errors linearly.

• Note that recent reevaluations of axial vector contribution lead to much smaller
estimates than in MV: aHLbL;axial

µ = (8± 3)⇥ 10�11 (Pauk, Vanderhaeghen ’14;
Jegerlehner ’14, ’15). This would shift central values of compilations downwards:

a

HLbL
µ = (98± 26)⇥ 10�11 (PdRV)
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Figure 1. The di↵erent contributions to HLbL scattering in the muon g�2 and their chiral and large-N
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counting.

hadronic picture, the four-point function is decomposed into single-meson exchanges and loops of
hadrons, e.g. pions. Often the QCD short-distance part is modelled by a dressed constituent quark
loop, which raises issues of double counting. The couplings of the hadrons (and the constituent
quarks) to the photons involve, in general, momentum dependent vertex functions (form factors). The
di↵erent contributions have been classified in Ref. [20] according to their leading order in the chiral
expansion p

2 and their large-N
c

counting to bring some order and systematics into the calculations.
The relevant momentum scales in HLbL are around 0 � 2 GeV, i.e. in the non-perturbative res-

onance region of QCD. The QCD four-point function is, however, a very complicated object that in-
volves many Lorentz structures [8, 11] that depend on several invariant photon momenta with mixed
regions of small and large momenta. Therefore the distinction between low and high energies and the
use of an e↵ective field theory approach (chiral perturbation theory with hadronic resonances) at low
momenta and of perturbative QCD at high momenta is not so straightforward. So far only hadronic
models have been used to estimate the full HLbL contribution. A selection of these results and some
compilations, including those quoted in Eqs. (1) and (2), is shown in Table 1. One important di↵erence
between these two compilations is the combination of the errors of the individual contributions. They
are combined in quadrature in Ref. [5] and linearly in Refs. [1, 6], as was done in Ref. [8]. Since these
are model errors, not experimental uncertainties, both ways of combining them can be questioned.

The contribution from the light pseudoscalars ⇡0, ⌘, ⌘0 is numerically dominant according to most
model calculations. Because of this observation, there are many evaluations of this contribution, see
Refs. [1, 22, 23] and references therein. The central value is about a

HLbL;P
µ = 90 ⇥ 10�11 with a

spread for most calculations of about 15% (but 30% if the central values of all estimates are taken into
account), which can be understood by looking at the relevant momentum regions in a 3-dimensional
integral representation [1, 23], with model-independent weight functions that are peaked below 1 GeV
for the pion and below about 1.5 � 2 GeV for ⌘, ⌘0. As long as the transition form factors fall o↵ for
large momenta, one obtains always very similar results. In Ref. [10] a QCD short-distance constraint
from the operator product expansion (OPE) on the four-point function was derived by connecting it to
the chiral triangle anomaly. The constraint is then saturated by the pion-pole contribution alone which
is a model assumption. This leads to an increased value, since there is no pion transition form factor
at the external vertex, but then no quark-loop contribution should be added.

The other contributions to HLbL are, however, not negligible at the level of the precision goal of
(15�20)⇥10�11 needed to match future experiments. For the dressed pion-loop there is a strong model-
dependence, cf. the results obtained in Refs. [7, 8] as discussed in Refs. [10, 24]. There is also some

Dominant	hadronic	contribu6ons	to	ahlbl
µ
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[Nyffeler,	arXiv:1710.09742]

HLbL in muon g � 2: model calculations (continued)

Contribution BPP HKS, HK KN MV BP, MdRR PdRV N, JN

⇡0, ⌘, ⌘0 85±13 82.7±6.4 83±12 114±10 � 114±13 99 ± 16

axial vectors 2.5±1.0 1.7±1.7 � 22±5 � 15 ± 10 22 ± 5

scalars �6.8±2.0 � � � � �7±7 �7±2

⇡, K loops �19±13 �4.5±8.1 � � � �19±19 �19±13
⇡,K loops
+subl. N

C

� � � 0±10 � � �

quark loops 21±3 9.7±11.1 � � � 2.3 (c-quark) 21±3

Total 83±32 89.6±15.4 80±40 136±25 110±40 105 ± 26 116 ± 39

BPP = Bijnens, Pallante, Prades ’95, ’96, ’02; HKS = Hayakawa, Kinoshita, Sanda ’95, ’96; HK = Hayakawa, Kinoshita ’98, ’02; KN =
Knecht, AN ’02; MV = Melnikov, Vainshtein ’04; BP = Bijnens, Prades ’07; MdRR = Miller, de Rafael, Roberts ’07; PdRV = Prades, de
Rafael, Vainshtein ’09; N = AN ’09, JN = Jegerlehner, AN ’09

• PdRV (Glasgow consensus): Do not consider dressed light quark loops as
separate contribution. Assume it is already taken into account by using
short-distance constraint of MV ’04 on pseudoscalar-pole contribution (no form
factor at external vertex). Added all errors in quadrature.

• N, JN: New evaluation of pseudoscalar exchange contribution imposing new
short-distance constraint on o↵-shell form factors. Took over most values from
BPP, except axial vectors from MV. Added all errors linearly.

• Note that recent reevaluations of axial vector contribution lead to much smaller
estimates than in MV: aHLbL;axial
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hadronic picture, the four-point function is decomposed into single-meson exchanges and loops of
hadrons, e.g. pions. Often the QCD short-distance part is modelled by a dressed constituent quark
loop, which raises issues of double counting. The couplings of the hadrons (and the constituent
quarks) to the photons involve, in general, momentum dependent vertex functions (form factors). The
di↵erent contributions have been classified in Ref. [20] according to their leading order in the chiral
expansion p

2 and their large-N
c

counting to bring some order and systematics into the calculations.
The relevant momentum scales in HLbL are around 0 � 2 GeV, i.e. in the non-perturbative res-

onance region of QCD. The QCD four-point function is, however, a very complicated object that in-
volves many Lorentz structures [8, 11] that depend on several invariant photon momenta with mixed
regions of small and large momenta. Therefore the distinction between low and high energies and the
use of an e↵ective field theory approach (chiral perturbation theory with hadronic resonances) at low
momenta and of perturbative QCD at high momenta is not so straightforward. So far only hadronic
models have been used to estimate the full HLbL contribution. A selection of these results and some
compilations, including those quoted in Eqs. (1) and (2), is shown in Table 1. One important di↵erence
between these two compilations is the combination of the errors of the individual contributions. They
are combined in quadrature in Ref. [5] and linearly in Refs. [1, 6], as was done in Ref. [8]. Since these
are model errors, not experimental uncertainties, both ways of combining them can be questioned.

The contribution from the light pseudoscalars ⇡0, ⌘, ⌘0 is numerically dominant according to most
model calculations. Because of this observation, there are many evaluations of this contribution, see
Refs. [1, 22, 23] and references therein. The central value is about a

HLbL;P
µ = 90 ⇥ 10�11 with a

spread for most calculations of about 15% (but 30% if the central values of all estimates are taken into
account), which can be understood by looking at the relevant momentum regions in a 3-dimensional
integral representation [1, 23], with model-independent weight functions that are peaked below 1 GeV
for the pion and below about 1.5 � 2 GeV for ⌘, ⌘0. As long as the transition form factors fall o↵ for
large momenta, one obtains always very similar results. In Ref. [10] a QCD short-distance constraint
from the operator product expansion (OPE) on the four-point function was derived by connecting it to
the chiral triangle anomaly. The constraint is then saturated by the pion-pole contribution alone which
is a model assumption. This leads to an increased value, since there is no pion transition form factor
at the external vertex, but then no quark-loop contribution should be added.

The other contributions to HLbL are, however, not negligible at the level of the precision goal of
(15�20)⇥10�11 needed to match future experiments. For the dressed pion-loop there is a strong model-
dependence, cf. the results obtained in Refs. [7, 8] as discussed in Refs. [10, 24]. There is also some
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Can	laice	QCD	deliver	es6mates	with	sufficient	accuracy	in	the	
coming	years?
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Collaborators:

N.	Asmussen,	A.	Gérardin,	O.	Gryniuk,	G.	von	Hippel,	B.	Hörz,	H.	Horch,	
H.B.	Meyer,	A.	Nyffeler,	V.	Pascalutsa,	A.	Risch,	HW

M.	Della	Morte,	A.	Francis,	J.	Green,	V.	Gülpers,	B.	Jäger,	G.	Herdoíza

• Direct	determina6ons	
of	LO	 ahvp

µ

• Exact	QED	kernel		
• Forward	sca_ering	

amplitude

• Transi6on	form	factor	
for		⇡0 ! �⇤�⇤
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Sta6s6cal	accuracy	of	Π(Q2)	deteriorates	as	Q	⟶	0

Jµ = 2
3 u�µu � 1

3 d�µd � 1
3 s�µs + . . .
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La:ce	QCD	approach	to	HVP
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Main	issues:

Sta6s6cal	accuracy	at	the	sub-percent	level	required

Reduce	systema6c	uncertainty	associated	with	region	of	small	Q2		
⇔			accurate	determina6on	of	Π(0)

Include	quark-disconnected	diagrams

Include	isospin	breaking:			mu	≠	md,		QED	correc6ons

Perform	comprehensive	study	of	finite-volume	effects
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Compare	different	methods	
to	constrain	infrared	regime
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Finite-volume	correc6ons	
sizeable

Quark-disconnected	diagrams	
contribute	<	2%

ahvp
µ = (654 ± 32 stat ± 17 syst ± 10 scale ± 7 FV

+ 0
�10 disc) · 10�10

[Della	Morte	et	al.,	JHEP	10	(2017)	020]
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Laice	QCD	vs.	dispersion	theory:

ahvp
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“no	new	physics”

Increase	overall	precision	of	laice	QCD	calcula6ons
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La:ce	QCD	approaches	to	HLbL

36

Matrix	element	of	e.m.	current	between	muon	ini6al	and	final	states:
D
µ(p0, s0)

���Jµ(0)
��� µ(p, s)

E
= �e u(p0, s0)

 
F1(Q2)�µ +

F2(Q2)
2m

�µ⌫Q⌫
!

u(p, s)

ahlbl
µ = F2(0)

RBC/UKQCD:

QCD	+	QED	simula6ons	
QCD	+	stochas6c	QED

[Hayakawa	et	al.	2005;	Blum	et	al.	2015]

[Blum	et	al.	2016,	2017]

Mainz	group:

Exact	QED	kernel	in	posi6on	space	
Transi6on	form	factors	of	sub-processes	
Forward	sca_ering	amplitude

[Asmussen	et	al.	2015,	2016,	and	in	prep.]

[Gérardin,	Meyer,	Nyffeler	2016]

[Green	et	al.	2015,	2017]
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QCD	+	Stochas-c	QED

37

Stochas6c	treatment	of	QED	contribu6on:

[Blum	et	al.,	Phys	Rev	D93	(2016)	014503]

inser6on	of	three	exact	Feynman	gauge	photon	propagators

Gµ⌫(x, y) =
1

VT

�µ⌫
X

k, |~k|,0

eik·(x�y)

k̂

2

[Blum	et	al.,	Phys	Rev	Le`	118	(2017)	022005]

(ahlbl

µ )

con

= (116.0 ± 9.6) · 10

�11

Leading	disconnected	contribu6on:

68

Figure 5.1: Leading order diagram, survives in SU(3) limit.
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Figure 5.2: Next to leading order diagrams. O(ms �ml), vanishes in SU(3) limit.

a result, not much e↵ort is needed in order to control the error from the long distance region.

For disconnected diagrams, the signal has to come from a subtle gluon interaction between

the two quark loops, which only emerges after gauge averaging. As a result, although the

signal is still exponentially suppressed when |r| = |x � z| becomes large, the noise remains

constant for arbitrary |r|. Since the formula involves summation over r, one can expect that a

lot of noise will come from the large |r| region, and this noise will become larger if we increase

the volume. However, in terms of evaluating the diagram on the lattice, the independence of

these two loops also provide some benefit. The contraction at y position does not depend on

the position of z, allowing the M2 trick to be applied without recomputing the muon part.

Compute	sub-leading	disconnected	diagrams

Connected	contribu6on:

2

The HVP contribution is the largest hadronic contri-
bution and can be computed from a dispersion relation
and experimental e+e� annihilation data. This is a well-
developed method with a fractional-percent error. The
leading-order HVP contribution is 692.3(4.2)⇥ 10�10 [8]
or 694.9(4.3) ⇥ 10�10 [9]. This dispersive approach is
an active research area and results with reduced errors
should be expected [10]. The HVP contribution can also
be calculated with lattice QCD. With recently developed
methods and increased computational power, similar or
even higher precision results may be possible [11–15].
In contrast, the HLbL contribution is at present only
estimated by model calculations which give a result of
10.5(2.6) ⇥ 10�10 [16, 17] or 11.6(3.9) ⇥ 10�10 [1]. This
method is di�cult to improve further although it is pos-
sible to compare the model result for hadronic light-by-
light scattering with a lattice result for this scattering
amplitude [18]. A dispersion relation analysis of the
HLbL contribution is not available although work is un-
derway in this direction [19–24].

Combining these results gives the standard model pre-
diction asm

µ

= 11659184.0(5.9)⇥10�10 which di↵ers from
the experimental value above by aexp

µ

�asm
µ

= 24.0(6.9)⇥
10�10, about twice the estimate for the HLbL contribu-
tion. Thus, a systematically improvable, lattice determi-
nation of the HLbL contribution is needed to resolve or
firmly establish the discrepancy.

The complete set of HLbL diagrams include the con-
nected diagrams in Fig. 2 and the disconnected diagrams
in Fig. 3, 4, and 5. Only quark loops that are directly
connected to photons are drawn in the figures. This is be-
cause only these quark propagators need to be explicitly
calculated on the lattice. The e↵ects of gluons and other
quark loops are included automatically through the eval-
uation of these explicit quark propagators and the use
of an unquenched gauge ensemble. Although there are
many di↵erent types of disconnected diagrams, only one
type, shown in Fig. 3, survives in the SU(3) limit. The
other diagrams, shown in Figs. 4 and 5, vanish in SU(3)
limit because they contain quark loops that couple only
to one photon and the sum of the charges of the u, d, s
quarks is zero. Also, because the strange quark carries
only 1/3 of the electron charge, diagrams that are sup-
pressed by the di↵erence between the strange and light
quark masses are suppressed by their charge factors too.

xsrc xsnky′,σ′ z′,κ′ x′, ρ′

xop, ν

z,κ
y,σ x, ρ

xsrc xsnky′,σ′ x′, ρ′ z′,κ′

xop, ν

z,κ
y,σ x, ρ

Figure 2. Connected hadronic light-by-light diagrams. There
are four additional diagrams resulting from further permuta-
tions of the photon vertices on the muon line.

xsrc xsnkz′,κ′ y′,σ′ x′, ρ′

xop, ν

z,κ y,σ x, ρ

Figure 3. Leading-order disconnected diagram which is non-
zero in SU(3) limit. There are additional diagrams which can
be obtained from permutation of the photon vertices on the
muon line.

xsrc xsnky′,σ′ x′, ρ′ z′,κ′

xop, ν

z,κy,σ x, ρ

xsrc xsnky′,σ′ z′,κ′ x′, ρ′

xop, ν

z,κy,σ x, ρ

Figure 4. Disconnected diagrams of orderms�ml. There are
additional diagrams which can be obtained from permutation
of the photon vertices on the muon line.

xsrc xsnkz′,κ′ y′,σ′ x′, ρ′

xop, ν

z,κ y,σ x, ρ

xsrc xsnky′,σ′ x′, ρ′ z′,κ′

xop, ν

z,κ
y,σ x, ρ

xsrc xsnkz′,κ′
y′,σ′ x′, ρ′

xop, ν

z,κ y,σ x, ρ

Figure 5. Disconnected diagrams of order (ms � ml)
2 and

higher. There are additional diagrams which can be obtained
from permutation of the photon vertices on the muon line.

The first attempt using lattice QCD to compute the
connected contribution to HLbL was made by Blum,
Chowdhury, Hayakawa, and Izubuchi [25], which demon-
strated the possibility of performing such calculation.
A series of improvements in methodology were made
in Ref. [26], eliminating two sources of systematic ef-
fects arising from the use of larger-than-physical electric
charge and non-zero momentum transfer. The methods
presented in Ref. [26] also lead to a substantial reduction
in the statistical noise making a direct lattice calcula-
tion with a physical pion mass possible. Here, we report
the result of the first connected HLbL lattice calculation
with physical pion mass. In addition to the connected
HLbL calculation, we extended the methods of Ref. [26]
and compute the leading disconnected diagrams shown
in Fig. 3 using the same set of configurations. This is the
first disconnected HLbL calculation and the result sug-

(ahlbl
µ )disc = (�62.5 ± 8.0) · 10�11
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Determine	QED	part	perturba6vely	in	the	con6nuum	in	infinite	volume	
	no	power-law	volume	effects

a
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me
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QCD	four-point	func6on:
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Jµ(x)J⌫(y)J�(z)J�(0)

E

QED	kernel	func6on: L[⇢,�];µ⌫�(x, y)
• Infra-red	finite;	can	be	computed	semi-analy6cally	

• Admits	a	tensor	decomposi6on	in	terms	of	six	weight	func6ons	
which	depend	on

x

2, y

2, x · y

3D	integra6on	instead	of	
Z

d

4
x

Z
d

4
y

Weight	func6ons	computed	and	stored	on	disk

[Asmussen,	Green,	Meyer,	Nyffeler,	in	prep.]



g–2	as	a	probe	for	new	physicsHartmut	Wittig

Transi-on	form	factor	π0	⟶	γ✻γ✻

39

Pseudoscalar	meson	pole	expected	to	dominate	
LbL	sca_ering

Compute	transi6on	form	factor	between	
π0	and	two	off-shell	photons:

✏µ⌫↵� q↵1 q�2 F⇡0�⇤�⇤ (m2
⇡; q2
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Antoine Gérardin 10 Lattice calculation of the pion transition form factor ⇡0 ! �⇤�⇤
Mµ⌫ ⇠ C(3)

µ⌫ (⌧, t⇡; ~p, ~q1, ~q2) =
X

~x,~z

D

T

n

J⌫(~0, ⌧ + t⇡)Jµ(~z, t⇡)P(~x, 0)
oE

ei~p·~xe�i~q1·~z

Compute	connected	and	disconnected	contribu6ons
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[Gérardin,	Meyer,	Nyffeler,	Phys	Rev	D94	(2016)	074507]

Fit	VMD,	LMD,	LMD-V	models,	e.g.
F LMD
⇡0�⇤�⇤ =

↵M4
V + �(q

2
1 + q2

2)
(M2

V � q2
1)(M2

V � q2
2)
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Results	for	π0	contribu6on	to	hadronic	light-by-light	sca_ering:

(ahlbl
µ )⇡0 = (65.0 ± 8.3) · 10�11 (LMD+V) (stat.	error	only)
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Summary	&	Outlook

Muon	anomalous	magne-c	moment	

• One	of	the	most	promising	hints	for	new	physics	

• Beau6ful	interplay	between	theory	and	experiment	

• Numerous	technical	and	computa6onal	challenges	

• New	experiments	will	significantly	increase	sensi6vity	

• Theory	must	keep	pace

La:ce	QCD	

• Provides	model-independent	es6mates	for	hadronic	contribu6ons	

• HVP:		difficult	to	reach	sub-percent	precision	

• HLbL:	10–15%	calcula6on	will	have	great	impact
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Summary	&	Outlook

First	results	from	E989	expected	in	2018	

Stay	tuned!
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Zooming in: A1, Babar, NA48 

17

Dark Matter, Hadron Physics and Fusion Physics

2, GeV/cA’m
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Figure 6. The NA48/2 preliminary upper limits at 90% CL on
the mixing parameter ε2 versus the DPmassmA′ , compared to the
other published exclusion limits from meson decay, beam dump
and e+e− collider experiments [14]. Also shown are the band
where the consistency of theoretical and experimental values of
muon g − 2 improves to ±2σ or less, and the region excluded by
the electron g − 2 measurement [3, 15].

both the kinematic suppression of the π0 → γA′ decay and
the decreasing acceptance.

The assumption of prompt DP decay that is funda-
mental to this analysis is justified a posteriori by the ob-
tained results: all upper limits on ε2m2A′ are above 6 ×
10−5 (MeV/c2)2, corresponding to maximum DP mean
paths in the NA48/2 reference frame below 10 cm (see
Section 1). The corresponding loss of efficiency of the
trigger and event selection (both relying on 3-track vertex
reconstruction) is negligible, as the typical resolution on
the vertex longitudinal coordinate in the forward NA48/2
geometry is ≈ 1 m.

6 Summary and outlook
The NA48/2 experiment at CERN was exposed to about
2 × 1011 K± decays in flight in 2003–2004. The large in-
tegrated kaon flux makes it a precision kaon by also π0
physics facility, and the studies of the π0 decay physics
with the NA48/2 data have started. Preliminary results on
dark photon search in π0 decays are reported: no signal is
observed, and the obtained upper limits on the mixing pa-
rameter ε2 improve over the world data in the mass range
10–60 MeV/c2. In particular, the limits at 90% CL are

ε2 < 10−6 for 12 MeV/c2 < mA′ < 55 MeV/c2, and the
strongest limits reach ε2 = 6 × 10−7 at mA′ ≈ 20 MeV/c2.
Combined with the other available data, this result rules
out the DP as an explanation for the muon (g−2) anomaly,
assuming DP couples to quarks and decays predominantly
into SM fermions.

The performed search for the prompt A′ → e+e− de-
cay is limited by the irreducible π0D background: the ob-
tained upper limits on ε2 in the mass range 10–60 MeV/c2
are about three orders of magnitude higher than the sin-
gle event sensitivity. The sensitivity to ε2 achievable with
the employed method scales as the inverse square root of
the integrated beam flux, and therefore this technique is
unlikely to advance much below ε2 = 10−7 in the near
future, either by improving on the NA48/2 analysis or by
exploiting larger future π0 samples (e.g. the one expected
to be collected by the NA62 experiment at CERN [16]).
On the other hand, a search for a long-lived (i.e. low mA′

and low ε2) DP produced in the π0 decay from high mo-
mentum kaon decay in flight using the displaced vertex
method would be limited by the π0D background to a lesser
extent, and its sensitivity is worth investigating.
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Fig. 7.13: Physics beyond the SM: leading SUSY contributions to g� 2 in a super-
symmetric extension of the SM. Diagrams a) and b) correspond to diagrams a) and
b) of Fig. 7.4, respectively
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and k = 1,3 and i = 1, ...,4 denote the chargino and neutralino indices, m = 1,2 is the
smuon index, and the couplings are given by

cL
k = �g2 Vk1 ,
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with mixing matrices Vi j, Ui j and Ni j defined in (7.48). The kinematical variables
are the mass ratios xk =m2

�±k
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⌫̃µ
, xim =m2

�0
i
/m2
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, and the one–loop vertex functions

read
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2
(1� x)4 [1�6x+3x2+2x3�6x2 ln x] ,

FN
2 (x) =

3
(1� x)3 [1� x2+2x ln x] ,

and are normalized to FJ
i (1) = 1. The functions FC

i (x) are the ones calculated in
(7.13) and FN

i (x) in (7.16), respectively. The couplings gi denote the U(1) and SU(2)
gauge couplings g1 = e/cos⇥W and g2 = e/sin⇥W , respectively, and yµ is the muon’s
Yukawa coupling (7.47). The interesting aspect of the SUSY contribution to aµ is that
they are enhanced for large tan� in contrast to SUSY contributions to electroweak

Leading	SUSY	contribu6ons

[F.	Jegerlehner,	The	Anomalous	MagneWc	Moment	of	the	Muon,	Springer	Tracts	Mod.	Phys.	274	(2017)	1]
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ahvp
µ /10�10

“no	new	physics”

Increase	overall	precision	of	laice	QCD	calcula6ons


