The muon *g* – 2: A sensitive probe for new physics

Hartmut Wittig

PRISMA Cluster of Excellence, Institute for Nuclear Physics and Helmholtz Institute Mainz

PANDA Lecture Week GSI Darmstadt 12 December 2017

Magnetic moment of particles and nuclei

Particle with charge *e* and mass *m*:

$$\boldsymbol{\mu} = g \, \frac{e\hbar}{2m} \, \boldsymbol{S}, \qquad \boldsymbol{S} = \frac{\boldsymbol{\sigma}}{2}$$

Pauli equation:

$$i\hbar \frac{\partial}{\partial t} \psi(\mathbf{x}, t) = \left\{ \frac{1}{2m} \left[\boldsymbol{\sigma} \cdot (\boldsymbol{p} - e\boldsymbol{A}) \right]^2 + e\Phi \right\} \psi(\mathbf{x}, t)$$

$$\Leftrightarrow \qquad i\hbar \frac{\partial}{\partial t} \psi(\mathbf{x}, t) = \left\{ \frac{1}{2m} \left(\boldsymbol{p} - e\boldsymbol{A} \right)^2 + e\Phi - \frac{e\hbar}{2m} \,\boldsymbol{\sigma} \cdot \boldsymbol{B} \right\} \psi(\mathbf{x}, t)$$

- * Non-relativistic limit of Dirac equation: g = 2
- * Experimental measurement:

 $g_e = 2.0023193...$ $g_\mu = 2.0023318...$

* Dirac value of g = 2 modified by quantum corrections

$$g = 2(1 + a) \implies a = \frac{1}{2}(g - 2)$$

* Dirac value of g = 2 modified by quantum corrections

$$g = 2(1 + a) \implies a = \frac{1}{2}(g - 2)$$

 $a_e^{\exp} = 0.001\,159\,652\,181\,643(764)$

* Dirac value of g = 2 modified by quantum corrections

$$g = 2(1 + a) \implies a = \frac{1}{2}(g - 2)$$

 $a_e^{\exp} = 0.001\,159\,652\,181\,643(764)$

* First-order QED correction:

[J. Schwinger, Phys Rev 73 (1948) 416]

3

* Dirac value of g = 2 modified by quantum corrections

$$g = 2(1 + a) \implies a = \frac{1}{2}(g - 2)$$

 $a_e^{\exp} = 0.001\,159\,652\,181\,643(764)$

First-order QED correction:

[J. Schwinger, Phys Rev 73 (1948) 416]

* Dirac value of g = 2 modified by quantum corrections

$$g = 2(1 + a) \implies a = \frac{1}{2}(g - 2)$$
$$a_e^{\exp} = 0.001\ 159\ 652\ 181\ 643(764)$$
$$a_\mu^{\exp} = 0.001\ 165\ 920\ 9(6)$$

* First-order QED correction:

[J. Schwinger, Phys Rev 73 (1948) 416]

***** QED corrections:

***** QED corrections:

....

* Weak corrections:

***** QED corrections:

....

* Weak corrections:

2)

* Strong corrections:

- Weak corrections:

* Strong corrections:

* Standard Model estimate of a_{μ} deviates from experiment:

 $a_{\mu}^{\exp} = 116\,592\,089\,(54)_{\text{stat}}\,(33)_{\text{syst}}\cdot 10^{-11}$ E821 @ BNL $a_{\mu}^{\text{SM}} = 116\,591\,776\,(44)\cdot 10^{-11}$ Jegerlehner 2017

* Standard Model estimate of a_{μ} deviates from experiment:

4.1
$$\sigma$$

 $a_{\mu}^{\exp} = 116592089(54)_{stat}(33)_{syst} \cdot 10^{-11}$ E821 @ BNL
 $a_{\mu}^{SM} = 116591776(44) \cdot 10^{-11}$ Jegerlehner 2017

* Standard Model estimate of a_{μ} deviates from experiment:

4.1
$$\sigma$$

 $a_{\mu}^{\exp} = 116592089(54)_{stat}(33)_{syst} \cdot 10^{-11}$ E821 @ BNL
 $a_{\mu}^{SM} = 116591776(44) \cdot 10^{-11}$ Jegerlehner 2017

* Deviation may be signal for new physics

$$a_{\mu} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{weak}} + a_{\mu}^{\text{strong}} + a_{\mu}^{\text{NP?}}$$

* Standard Model estimate of a_{μ} deviates from experiment:

4.1
$$\sigma$$

 $a_{\mu}^{\exp} = 116592089(54)_{stat}(33)_{syst} \cdot 10^{-11}$ E821 @ BNL
 $a_{\mu}^{SM} = 116591776(44) \cdot 10^{-11}$ Jegerlehner 2017

$$a_{\mu} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{weak}} + a_{\mu}^{\text{strong}} + a_{\mu}^{\text{NP?}}$$

- * New physics effects enhanced by $\delta a_{\ell} \propto m_{\ell}^2 / M_{?}^2$
- ⇒ Muon is more sensitive by a factor $(m_{\mu}/m_e)^2 \approx 4.3 \cdot 10^4$

Experimental determination of a_{μ}

Experimental determination of a_{μ}

QED contribution to a_{μ}

Experimental determination of a_{μ}

QED contribution to a_{μ}

Hadronic contributions to a_{μ}

Experimental determination of a_{μ}

QED contribution to a_{μ}

Hadronic contributions to a_{μ}

Hadronic contributions to a_{μ} from lattice QCD

- * Particle with charge *e* moving in a magnetic field:
 - Momentum turns with cyclotron frequency $\omega_{\rm C}$
 - Spin turns with $\omega_{\rm S}$

$$\omega_{\rm C} = -\frac{eB}{m\gamma}, \quad \omega_{\rm S} = -g \frac{eB}{2m} - (1-\gamma) \frac{eB}{m\gamma}$$

⇒ Spin turns relative to the momentum with frequency ω_a

$$\omega_a = \omega_{\rm S} - \omega_{\rm C} = -\underbrace{\frac{1}{2}(g-2)}_{a} \frac{eB}{m}$$

actual precession $\times 2$

* Storage rings require vertical focussing — apply electric quadrupole field

$$\boldsymbol{\omega}_a = -\frac{e}{m} \left\{ a_{\mu} \boldsymbol{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\boldsymbol{\beta} \times \boldsymbol{E}}{c} \right\}$$

[Bargmann, Michel & Telegdi 1959]

***** Tune γ such that term $\sim (\beta \times E)$ vanishes

actual precession $\times 2$

* Storage rings require vertical focussing — apply electric quadrupole field

$$\boldsymbol{\omega}_a = -\frac{e}{m} \left\{ a_{\mu} \boldsymbol{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\boldsymbol{\beta} \times \boldsymbol{E}}{c} \right\}$$

[Bargmann, Michel & Telegdi 1959]

* Tune γ such that term $\sim (\beta \times E)$ vanishes "magic" γ :

$$\gamma_{\text{magic}} = 29.3 \iff p_{\text{magic}} = 3.09 \,\text{GeV}/c$$

actual precession $\times 2$

* Storage rings require vertical focussing — apply electric quadrupole field

$$\boldsymbol{\omega}_{a} = -\frac{e}{m} \left\{ a_{\mu} \boldsymbol{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\boldsymbol{\beta} \times \boldsymbol{E}}{c} \right\}$$

[Bargmann, Michel & Telegdi 1959]

* Tune γ such that term $\sim (\beta \times E)$ vanishes "magic" γ :

$$\gamma_{\text{magic}} = 29.3 \iff p_{\text{magic}} = 3.09 \,\text{GeV}/c$$

actual precession $\times 2$

* Storage rings require vertical focussing — apply electric quadrupole field

$$\boldsymbol{\omega}_{a} = -\frac{e}{m} \left\{ a_{\mu} \boldsymbol{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\boldsymbol{\beta} \times \boldsymbol{E}}{c} \right\}$$

[Bargmann, Michel & Telegdi 1959]

* Tune γ such that term $\sim (\beta \times E)$ vanishes "magic" γ :

$$\gamma_{\text{magic}} = 29.3 \iff p_{\text{magic}} = 3.09 \,\text{GeV}/c$$

* Measure two quantities: ω_a , **B**

actual precession × 2 [Jegerlehner & Nyffeler, Phys Rep 477 (2009) 1]

[Jegerlehner & Nyffeler, Phys Rep 477 (2009) 1]

g-2 as a probe for new physics 9

Count rate and wiggle plot:

$$N(t) = N_0(E) \exp\left(-\frac{t}{\gamma \tau_{\mu}}\right) \left\{1 + A(E) \sin\left(\omega_a t + \phi(E)\right)\right\}$$

[B. Lee Roberts]

Count rate and wiggle plot:

$$N(t) = N_0(E) \exp\left(-\frac{t}{\gamma \tau_{\mu}}\right) \left\{1 + A(E) \sin\left(\omega_a t + \phi(E)\right)\right\}$$

Count rate and wiggle plot:

$$N(t) = N_0(E) \exp\left(-\frac{t}{\gamma \tau_{\mu}}\right) \left\{1 + A(E) \sin\left(\omega_a t + \phi(E)\right)\right\}$$

From BNL E821 to Fermilab E989

 $a_{\mu}^{\exp} = 116\,592\,089\,(54)_{\text{stat}}\,(33)_{\text{syst}}\cdot 10^{-11}$

- * Total precision of 0.54 ppm, dominated by statistics
- ★ Use hotter beam of Fermilab proton booster: 8 GeV/c
- Suppress pion background longer pion decay channel

BNL: 80 m -> Fermilab: 2 km

- Aim for 100 ppb statistical and 100 ppb systematic error
 —> 0.14 ppm total error
- * Transport BNL storage ring to Fermilab

Re-assembly of the storage ring

[©B. Lee Roberts]

QED contribution to a_{μ}

* QED contribution has been worked out in perturbation theory to 5^{th} order in α

QED contribution to a_{μ}

SM	116 591 776.000	100%	#diagrams
QED, tot	116 584 718.951	99,9939%	
2	116 140 973.318	99,6133%	1
4	413 217.629	0,3544%	9
6	30 141.902	0,0259%	72
8	381.008	0,0003%	891
10	5.094	4.10-6 %	12672

QED contribution to a_{μ}

SM	116 591 776.000	100%	#diagrams	
QED, tot	116 584 718.951	99,9939%		
2	116 140 973.318	99,6133%	1	
4	413 217.629	0,3544%	9	
6	30 141.902	0,0259%	72	
8	381.008	0,0003%	891	
10	5.094	4.10-6 %	12672	
week ending RL 109, 111808 (2012) PHYSICAL REVIEW LETTERS 14 SEPTEMBER 2				

Complete Tenth-Order QED Contribution to the Muon g - 2

Tatsumi Aoyama,^{1,2} Masashi Hayakawa,^{3,2} Toichiro Kinoshita,^{4,2} and Makiko Nio²

¹Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Nagoya, 464-8602, Japan ²Nishina Center, RIKEN, Wako, Japan 351-0198

³Department of Physics, Nagoya University, Nagoya, Japan 464-8602

⁴Laboratory for Elementary Particle Physics, Cornell University, Ithaca, New York 14853, USA

(Received 24 May 2012; published 13 September 2012)
QED contribution to a_{μ}

QED contribution to a_{μ}

Physics Letters B 772 (2017) 232-238

High-precision calculation of the 4-loop contribution to the electron g-2 in QED

Stefano Laporta

Dipartimento di Fisica, Università di Bologna, Istituto Nazionale Fisica Nucleare, Sezione di Bologna, Via Irnerio 46, I-40126 Bologna, Italy

ABSTRACT

I have evaluated up to 1100 digits of precision the contribution of the 891 4-loop Feynman diagrams contributing to the electron *g*-2 in QED. The total mass-independent 4-loop contribution is

 $a_e = -1.912245764926445574152647167439830054060873390658725345... \left(\frac{\alpha}{\pi}\right)^4$.

QED contribution to a_{μ}

Physics Letters B 772 (2017) 232-238

High-precision calculation of the 4-loop contribution to the electron g-2 in QED

Stefano Laporta

Dipartimento di Fisica, Università di Bologna, Istituto Nazionale Fisica Nucleare, Sezione di Bologna, Via Irnerio 46, I-40126 Bologna, Italy

ABSTRACT

I have evaluated up to 1100 digits of precision the contribution of the 891 4-loop Feynman diagrams contributing to the electron *g*-2 in QED. The total mass-independent 4-loop contribution is

 $a_e = -1.912245764926445574152647167439830054060873390658725345... \left(\frac{\alpha}{\pi}\right)^4.$

Theory confronts experiment

Contribution	Value Error		Reference	
QED incl. 4-loops+5-loops	11 658 471 . 8851	0.036	Remiddi, Kinoshita et al.	
Leading hadronic vac. pol.	688.77	3.38	data-driven $e^+e^- + \tau$	
Subleading hadronic vac. pol.	-9.927	0.072	2016 update	
NNLO hadronic vac. pol.	1.224	0.010	[31]	
Hadronic light-by-light	10.34	2.88	[46, 69]	
Weak incl. 2-loops	15.36	0.11	[11, 70]	
Theory	11659177.6	4.4	_	
Experiment	11659209.1	6.3	[2] updated	
Exp The. 4.1 standard deviations	31.3	7.7		

Theory confronts experiment

* Experimental sensitivity of E989 exceeds total theory uncertainty by far!

Hadronic contributions to a_{μ}

Hadronic vacuum polarisation:

Hadronic light-by-light scattering:

Dispersion theory:

 $a_{\mu}^{\rm hvp} = (6888 \pm 34) \cdot 10^{-11}$

(combined e^+e^- and τ data)

 $a_{\mu}^{\text{hlbl}} = (105 \pm 26) \cdot 10^{-11}$

"Glasgow consensus"

Hadronic vacuum polarisation

* Hadronic electromagnetic current:

$$J^{\mu}(x) = \frac{2}{3}\bar{u}\gamma^{\mu}u - \frac{1}{3}\bar{d}\gamma^{\mu}d - \frac{1}{3}\bar{s}\gamma^{\mu}s + \frac{2}{3}\bar{c}\gamma^{\mu}c + \dots$$

$$a_{\mu}^{\text{hvp}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{m_{\pi^0}^2}^{\infty} ds \, \frac{R_{\text{had}}(s) \, \hat{K}(s)}{s^2}, \quad R_{\text{had}}(s) = \sigma(e^+e^- \to \text{hadrons}) \left| \frac{4\pi \, \alpha(s)}{(3s)} \right|^2$$

Hadronic vacuum polarisation

* Hadronic electromagnetic current:

$$J^{\mu}(x) = \frac{2}{3}\bar{u}\gamma^{\mu}u - \frac{1}{3}\bar{d}\gamma^{\mu}d - \frac{1}{3}\bar{s}\gamma^{\mu}s + \frac{2}{3}\bar{c}\gamma^{\mu}c + \dots$$

$$(q^{\mu}q^{\nu} - q^{2}g^{\mu\nu})\Pi(q^{2}) = ie^{2} \int d^{4}x \, e^{iq \cdot x} \langle 0 | T J^{\mu}(x)J^{\nu}(0) | 0 \rangle$$

$$a_{\mu}^{\text{hvp}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{m_{\pi^0}^2}^{\infty} ds \, \frac{R_{\text{had}}(s)\,\hat{K}(s)}{s^2}, \quad R_{\text{had}}(s) = \sigma(e^+e^- \to \text{hadrons}) \left|\frac{4\pi\,\alpha(s)}{(3s)}\right|^2$$

Hadronic vacuum polarisation

* Hadronic electromagnetic current:

$$J^{\mu}(x) = \frac{2}{3}\bar{u}\gamma^{\mu}u - \frac{1}{3}\bar{d}\gamma^{\mu}d - \frac{1}{3}\bar{s}\gamma^{\mu}s + \frac{2}{3}\bar{c}\gamma^{\mu}c + \dots$$

$$(q^{\mu}q^{\nu} - q^{2}g^{\mu\nu})\Pi(q^{2}) = ie^{2} \int d^{4}x \, e^{iq \cdot x} \langle 0 | T J^{\mu}(x)J^{\nu}(0) | 0 \rangle$$

* Optical theorem:

$$a_{\mu}^{\text{hvp}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{m_{\pi^0}}^{\infty} ds \, \frac{R_{\text{had}}(s) \, \hat{K}(s)}{s^2}, \quad R_{\text{had}}(s) = \sigma(e^+e^- \to \text{hadrons}) \left|\frac{4\pi \, \alpha(s)}{(3s)}\right|^2$$

* Knowledge of $R_{had}(s)$ required down to pion threshold

$$a_{\mu}^{\text{hvp}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \left\{ \int_{m_{\pi^0}^2}^{E_{\text{cut}}^2} ds \, \frac{R_{\text{had}}^{\text{data}}(s)\,\hat{K}(s)}{s^2} + \int_{E_{\text{cut}}^2}^{\infty} ds \, \frac{R_{\text{had}}^{\text{pQCD}}(s)\,\hat{K}(s)}{s^2} \right\}$$

 \Rightarrow Use experimental data for cross section ratio $R_{had}(s)$

[BESIII Collaboration, 2016]

* Knowledge of $R_{had}(s)$ required down to pion threshold

$$a_{\mu}^{\text{hvp}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \left\{ \int_{m_{\pi^0}^2}^{E_{\text{cut}}^2} ds \, \frac{R_{\text{had}}^{\text{data}}(s)\,\hat{K}(s)}{s^2} + \int_{E_{\text{cut}}^2}^{\infty} ds \, \frac{R_{\text{had}}^{\text{pQCD}}(s)\,\hat{K}(s)}{s^2} \right\}$$

 \Rightarrow Use experimental data for cross section ratio $R_{had}(s)$

[BESIII Collaboration, 2016]

* Knowledge of $R_{had}(s)$ required down to pion threshold

$$a_{\mu}^{\text{hvp}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \left\{ \int_{m_{\pi^0}^2}^{E_{\text{cut}}^2} ds \, \frac{R_{\text{had}}^{\text{data}}(s)\,\hat{K}(s)}{s^2} + \int_{E_{\text{cut}}^2}^{\infty} ds \, \frac{R_{\text{had}}^{\text{pQCD}}(s)\,\hat{K}(s)}{s^2} \right\}$$

 \Rightarrow Use experimental data for hadronic cross section $R_{had}(s)$

Low-energy region dominates

- Stable deviation of 3–4 standard deviations between SM and experiment
- * Overall precision of HVP estimate: $\approx 0.5\%$
- Theory estimate subject to experimental uncertainties

 $a_{\mu}^{\rm hvp} = (6880.7 \pm 41.4) \cdot 10^{-11}$

(combined e⁺ e⁻ data)

- No simple dispersive framework
- * Identify dominant sub-processes, e.g.

- Individual contributions estimated using model calculations
- * Dispersive formalism set up for various subprocesses [Colangelo et al., 2014 ff]
- Lattice QCD calculations

* Dominant hadronic contributions to a_{μ}^{hlbl}

[Nyffeler, arXiv:1710.09742]

* Dominant hadronic contributions to a_{μ}^{hlbl}

[Nyffeler, arXiv:1710.09742]

 $+\ldots$

	(dressed)	exchanges		(dressed)
Chiral counting:	p^4	p^6	p^8	p^8
N_c counting:	1	N_c	N_c	N_c

Contribution	BPP	HKS, HK	KN	MV	BP, MdRR	PdRV	N, JN
π^0, η, η'	85±13	82.7±6.4	83±12	114 ± 10	_	114±13	99 ± 16
axial vectors	$2.5 {\pm} 1.0$	$1.7 {\pm} 1.7$	_	22±5	_	15 ± 10	22 ± 5
scalars	$-6.8{\pm}2.0$	_	—	_	_	-7±7	-7 ± 2
π, K loops	$-19{\pm}13$	-4.5 ± 8.1	_	_	_	$-19{\pm}19$	$-19{\pm}13$
π, K loops +subl. N_C	_	_	_	0±10	_	_	_
quark loops	21±3	9.7 ± 11.1	_	_	_	2.3 (c-quark)	21±3
Total	83±32	89.6±15.4	80±40	136 ± 25	110±40	105 ± 26	116 ± 39

BPP = Bijnens, Pallante, Prades '95, '96, '02; HKS = Hayakawa, Kinoshita, Sanda '95, '96; HK = Hayakawa, Kinoshita '98, '02; KN = Knecht, AN '02; MV = Melnikov, Vainshtein '04; BP = Bijnens, Prades '07; MdRR = Miller, de Rafael, Roberts '07; PdRV = Prades, de Rafael, Vainshtein '09; N = AN '09, JN = Jegerlehner, AN '09

* Dominant hadronic contributions to a_{μ}^{hlbl}

[Nyffeler, arXiv:1710.09742]

Contribution:	pion-loop		
	(dressed)		
Chiral counting:	p^4		
N_c counting:	1		

pseudoscalar exchanges p^6 N_c quark-loop (dressed)

"Glasgow consensus"

Contribution	BPP	HKS, HK	KN	MV	BP, MdRR	PdRV	N, JN
π^0, η, η'	85±13	82.7±6.4	83±12	114 ± 10	—	114±13	99 ± 16
axial vectors	$2.5 {\pm} 1.0$	1.7 ± 1.7	—	22 ± 5	_	15 ± 10	22 ± 5
scalars	$-6.8{\pm}2.0$	—	—	_	—	-7 ± 7	-7±2
$\pi, {\it K}$ loops	$-19{\pm}13$	-4.5 ± 8.1	_	—	_	$-19{\pm}19$	$-19{\pm}13$
π, K loops +subl. N_C	—	—	—	0±10	_	-	-
quark loops	21±3	9.7 ± 11.1	_	_	_	2.3 (c-quark)	21±3
Total	83±32	89.6±15.4	80±40	136±25	110±40	105 ± 26	116 ± 39

BPP = Bijnens, Pallante, Prades '95, '96, '02; HKS = Hayakawa, Kinoshita, Sanda '95, '96; HK = Hayakawa, Kinoshita '98, '02; KN = Knecht, AN '02; MV = Melnikov, Vainshtein '04; BP = Bijnens, Prades '07; MdRR = Miller, de Rafael, Roberts '07; PdRV = Prades, de Rafael, Vainshtein '09; N = AN '09, JN = Jegerlehner, AN '09

The muon g – 2 in lattice QCD

Motivation for first-principles approach:

- * No reliance on experimental data
 - except for simple hadronic quantities to fix bare parameters
- * No model dependence
 - except for chiral extrapolation and constraining the IR regime

The muon g – 2 in lattice QCD

Motivation for first-principles approach:

- * No reliance on experimental data
 - except for simple hadronic quantities to fix bare parameters
- No model dependence
 - except for chiral extrapolation and constraining the IR regime
- * Can lattice QCD deliver estimates with sufficient accuracy in the coming years?

 $\delta a_{\mu}^{\text{hvp}}/a_{\mu}^{\text{hvp}} < 0.5\%, \qquad \delta a_{\mu}^{\text{hlbl}}/a_{\mu}^{\text{hlbl}} \lesssim 10\%$

The Mainz $(g - 2)_{\mu}$ project

Collaborators:

N. Asmussen, A. Gérardin, O. Gryniuk, G. von Hippel, B. Hörz, H. Horch, H.B. Meyer, A. Nyffeler, V. Pascalutsa, A. Risch, HW

M. Della Morte, A. Francis, J. Green, V. Gülpers, B. Jäger, G. Herdoíza

• Direct determinations of LO a_{μ}^{hvp}

- Exact QED kernel
- Forward scattering amplitude

• Transition form factor for $\pi^0 \rightarrow \gamma^* \gamma^*$

* Convolution integral over Euclidean momenta: [Lautrup & de Rafael; Blum]

$$a_{\mu}^{\text{hvp}} = 4\alpha^2 \int_0^\infty dQ^2 f(Q^2) \left\{ \Pi(Q^2) - \Pi(0) \right\}$$
$$\Pi_{\mu\nu}(Q) = \int e^{iQ \cdot (x-y)} \left\langle J_{\mu}(x) J_{\nu}(y) \right\rangle \equiv \left(Q_{\mu} Q_{\nu} - \delta_{\mu\nu} Q^2 \right) \Pi(Q^2)$$
$$J_{\mu} = \frac{2}{3} \overline{u} \gamma_{\mu} u - \frac{1}{3} \overline{d} \gamma_{\mu} d - \frac{1}{3} \overline{s} \gamma_{\mu} s + \dots$$

* Convolution integral over Euclidean momenta: [Lautrup & de Rafael; Blum]

$$a_{\mu}^{\text{hvp}} = 4\alpha^2 \int_0^\infty dQ^2 f(Q^2) \left\{ \Pi(Q^2) - \Pi(0) \right\}$$
$$\Pi_{\mu\nu}(Q) = \int e^{iQ\cdot(x-y)} \left\langle J_{\mu}(x)J_{\nu}(y) \right\rangle \equiv \left(Q_{\mu}Q_{\nu} - \delta_{\mu\nu}Q^2 \right) \Pi(Q^2)$$
$$J_{\mu} = \frac{2}{3}\overline{u}\gamma_{\mu}u - \frac{1}{3}\overline{d}\gamma_{\mu}d - \frac{1}{3}\overline{s}\gamma_{\mu}s + \dots$$

- * Determine VPF $\Pi(Q^2)$ and additive renormalisation $\Pi(0)$
- * Integrand peaked near $Q^2 \approx (\sqrt{5} 2)m_{\mu}^2$

Convolution integral over Euclidean momenta: [Lautrup & de Rafael; Blum]

$$a_{\mu}^{\text{hvp}} = 4\alpha^2 \int_0^{\infty} dQ^2 f(Q^2) \left\{ \Pi(Q^2) - \Pi(0) \right\}$$
$$\Pi_{\mu\nu}(Q) = \int e^{iQ\cdot(x-y)} \left\langle J_{\mu}(x)J_{\nu}(y) \right\rangle \equiv \left(Q_{\mu}Q_{\nu} - \delta_{\mu\nu}Q^2 \right) \Pi(Q^2)$$
$$J_{\mu} = \frac{2}{3}\overline{u}\gamma_{\mu}u - \frac{1}{3}\overline{d}\gamma_{\mu}d - \frac{1}{3}\overline{s}\gamma_{\mu}s + \dots$$

- * Determine VPF $\Pi(Q^2)$ and additive renormalisation $\Pi(0)$
- * Integrand peaked near $Q^2 \approx (\sqrt{5} 2)m_{\mu}^2$
- * Lattice momenta are quantised: $Q_{\mu} = \frac{2\pi}{L_{\mu}}$
- * Statistical accuracy of $\Pi(Q^2)$ deteriorates as $Q \rightarrow 0$

* Convolution integral over Euclidean momenta: [Lautrup & de Rafael; Blum]

$$a_{\mu}^{\text{hvp}} = 4\alpha^2 \int_0^\infty dQ^2 f(Q^2) \left\{ \Pi(Q^2) - \Pi(0) \right\}$$
$$\Pi_{\mu\nu}(Q) = \int e^{iQ\cdot(x-y)} \left\langle J_{\mu}(x)J_{\nu}(y) \right\rangle \equiv \left(Q_{\mu}Q_{\nu} - \delta_{\mu\nu}Q^2 \right) \Pi(Q^2)$$

* Convolution integral over Euclidean momenta: [Lautrup & de Rafael; Blum]

$$a_{\mu}^{\text{hvp}} = 4\alpha^2 \int_0^\infty dQ^2 f(Q^2) \left\{ \Pi(Q^2) - \Pi(0) \right\}$$
$$\Pi_{\mu\nu}(Q) = \int e^{iQ\cdot(x-y)} \left\langle J_{\mu}(x)J_{\nu}(y) \right\rangle \equiv \left(Q_{\mu}Q_{\nu} - \delta_{\mu\nu}Q^2 \right) \Pi(Q^2)$$

* Convolution integral over Euclidean momenta: [Lautrup & de Rafael; Blum]

 \sim

$$a_{\mu}^{\text{hvp}} = 4\alpha^{2} \int_{0}^{\infty} dQ^{2} f(Q^{2}) \left\{ \Pi(Q^{2}) - \Pi(0) \right\}$$
$$\Pi_{\mu\nu}(Q) = \int e^{iQ \cdot (x-y)} \left\langle J_{\mu}(x) J_{\nu}(y) \right\rangle \equiv \left(Q_{\mu} Q_{\nu} - \delta_{\mu\nu} Q^{2} \right) \Pi(Q^{2})$$

Accurate determination requires large statistics on large volumes!

Main issues:

- * Statistical accuracy at the sub-percent level required
- ★ Reduce systematic uncertainty associated with region of small Q²
 ⇔ accurate determination of Π(0)
- Perform comprehensive study of finite-volume effects
- Include quark-disconnected diagrams

* Include isospin breaking: $m_u \neq m_d$, QED corrections

Results in two-flavour QCD

$$a_{\mu}^{\text{hvp}} = (654 \pm 32_{\text{stat}} \pm 17_{\text{syst}} \pm 10_{\text{scale}} \pm 7_{\text{FV}} + 0_{-10 \text{ disc}}) \cdot 10^{-10}$$

- Compare different methods to constrain infrared regime
- Finite-volume corrections sizeable
- Quark-disconnected diagrams
 contribute < 2%

[Della Morte et al., JHEP 10 (2017) 020]

Compilation & comparison

***** Lattice QCD vs. dispersion theory:

Compilation & comparison

Compilation & comparison

Increase overall precision of lattice QCD calculations

Lattice QCD approaches to HLbL

* Matrix element of e.m. current between muon initial and final states:

$$\left\langle \mu(\mathbf{p}', s') \left| J_{\mu}(0) \right| \mu(\mathbf{p}, s) \right\rangle = -e \,\overline{u}(\mathbf{p}', s') \left(F_1(Q^2) \gamma_{\mu} + \frac{F_2(Q^2)}{2m} \sigma_{\mu\nu} Q_{\nu} \right) u(\mathbf{p}, s)$$

$$a_{\mu}^{\text{hlbl}} = F_2(0)$$

RBC/UKQCD:

- A QCD + QED simulations
- A QCD + stochastic QED

Mainz group:

- Exact QED kernel in position space
- Transition form factors of sub-processes
- Forward scattering amplitude

[Hayakawa et al. 2005; Blum et al. 2015]

[Blum et al. 2016, 2017]

[Asmussen et al. 2015, 2016, and in prep.] [Gérardin, Meyer, Nyffeler 2016]

[Green et al. 2015, 2017]

QCD + Stochastic QED

- * Stochastic treatment of QED contribution:
 - ⇒ insertion of three exact Feynman gauge photon propagators

$$G_{\mu\nu}(x,y) = \frac{1}{VT} \delta_{\mu\nu} \sum_{k, |\vec{k}| \neq 0} \frac{e^{ik \cdot (x-y)}}{\hat{k}^2}$$

* Connected contribution:

 $(a_{\mu}^{\text{hlbl}})_{\text{con}} = (116.0 \pm 9.6) \cdot 10^{-11}$

Leading disconnected contribution:

 $(a_{\mu}^{\text{hlbl}})_{\text{disc}} = (-62.5 \pm 8.0) \cdot 10^{-11}$

Compute sub-leading disconnected diagrams

[Blum et al., Phys Rev D93 (2016) 014503]

[Blum et al., Phys Rev Lett 118 (2017) 022005]

Exact QED kernel in position space

★ Determine QED part perturbatively in the continuum in infinite volume
 ⇒ no power-law volume effects

$$a_{\mu}^{\text{hlbl}} = F_2(0) = \frac{me^6}{3} \int d^4y \int d^4x \,\overline{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \,i\Pi_{\rho;\mu\nu\lambda\sigma}(x,y)$$

- * QCD four-point function: $i\Pi_{\rho;\mu\nu\lambda\sigma}(x,y) = -\int d^4z \, z_\rho \left\langle J_\mu(x)J_\nu(y)J_\sigma(z)J_\lambda(0) \right\rangle$
- * QED kernel function: $\overline{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y)$

[Asmussen, Green, Meyer, Nyffeler, in prep.]

- Infra-red finite; can be computed semi-analytically
- Admits a tensor decomposition in terms of six weight functions which depend on x^2 , y^2 , $x \cdot y$

 \Rightarrow 3D integration instead of $\int d^4x \int d^4y$

Weight functions computed and stored on disk

Transition form factor $\pi^0 \longrightarrow \gamma * \gamma *$

- Pseudoscalar meson pole expected to dominate LbL scattering
- * Compute transition form factor between π^0 and two off-shell photons:

 \mathcal{T}

 t_{π}

$$\epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \mathcal{F}_{\pi^0\gamma^*\gamma^*}(m_{\pi}^2; q_1^2, q_2^2) \equiv M_{\mu\nu}$$

$$M_{\mu\nu} \sim C^{(3)}_{\mu\nu}(\tau, t_{\pi}; \vec{p}, \vec{q}_{1}, \vec{q}_{2}) = \sum_{\vec{x}, \vec{z}} \left\langle T \left\{ J_{\nu}(\vec{0}, \tau + t_{\pi}) J_{\mu}(\vec{z}, t_{\pi}) P(\vec{x}, 0) \right\} \right\rangle \, \mathrm{e}^{i\vec{p}\cdot\vec{x}} \mathrm{e}^{-i\vec{q}_{1}\cdot\vec{z}}$$

Compute connected and disconnected contributions

Transition form factor $\pi^0 \longrightarrow \gamma * \gamma *$

Fit VMD, LMD, LMD-V models, e.g.

Results for π^0 contribution to hadronic light-by-light scattering: *

> $(a_{\mu}^{\text{hlbl}})_{\pi^0} = (65.0 \pm 8.3) \cdot 10^{-11} \text{ (LMD+V)}$ (stat. error only)

> > [Gérardin, Meyer, Nyffeler, Phys Rev D94 (2016) 074507]

*
Summary & Outlook

Summary & Outlook

Muon anomalous magnetic moment

- One of the most promising hints for new physics
- Beautiful interplay between theory and experiment
- Numerous technical and computational challenges
- New experiments will significantly increase sensitivity
- Theory must keep pace

Summary & Outlook

Muon anomalous magnetic moment

- One of the most promising hints for new physics
- Beautiful interplay between theory and experiment
- Numerous technical and computational challenges
- New experiments will significantly increase sensitivity
- Theory must keep pace

Lattice QCD

- Provides model-independent estimates for hadronic contributions
- HVP: difficult to reach sub-percent precision
- HLbL: 10–15% calculation will have great impact

First results from E989 expected in 2018 Stay tuned!

BSM manifestations in $(g - 2)_{\mu}$

- * SM extensions larger symmetry groups: $G_{SM} \rightarrow G_{SM} \times U(1)^n$
- \Rightarrow Additional U(1) gauge bosons
- * "Dark photons": messenger particles to dark sector

BSM manifestations in $(g - 2)_{\mu}$

- * SM extensions larger symmetry groups: $G_{SM} \longrightarrow G_{SM} \times U(1)^n$
- \Rightarrow Additional U(1) gauge bosons
- * "Dark photons": messenger particles to dark sector

[M. Pospelov @ PhiPsi2017]

BSM manifestations in $(g - 2)_{\mu}$

- * SM extensions larger symmetry groups: $G_{SM} \longrightarrow G_{SM} \times U(1)^n$
- \Rightarrow Additional U(1) gauge bosons
- "Dark photons": messenger particles to dark sector
- Alternative: supersymmetric extensions

Leading SUSY contributions

[F. Jegerlehner, The Anomalous Magnetic Moment of the Muon, Springer Tracts Mod. Phys. 274 (2017) 1]

Compilation & comparison

Compilation & comparison

Compilation & comparison

Increase overall precision of lattice QCD calculations