

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

The Structure of the nucleon

Alaa Dbeyssi

Helmholtz-Institut Mainz

PANDA Lecture Week 2017– GSI/Darmstadt

QED: the strange theory of light and matter

Electromagnetic interaction via the exchange of virtual photons

QED is a time dependent perturbation theory

One photon interaction: $\alpha = 1/137$ Perurbative corrections: $\alpha^{n} = (1/137)^{n}$

QED converges rapidly: accurate predictions

 $d\sigma \sim \alpha^3$ +...

From QED to the theory of the strong interaction QCD

Quark model (Gell-Mann 1964) :

hadrons are made of quarks which are held together by the strong interaction

Hadronic scale ~ 1/fm (=1/139 MeV⁻¹) ~ Λ_{OCD} is non-perturbative

Studying the nucleon structure is an investigation of the non perturbative QCD

Electromagnetic structure of hadrons

QED interactions to probe the non perturbative **QCD**

- Connect quarks and gluons to hadrons via non-perturbative but **universal distribution functions** (QCD factorization)
- Provide unified view of the nucleon structure

Elastic Electron Proton Scattering- FFs - transverse spatial distributions

ep→ep

Deep Virtual Compton Scattering- Wide Angle Compton Scattering- GPDs – 1D momentum – 2D space distributions

Semi Inclusive Deep Inelastic Scattering- TMDs -3D momentum distributions + Spin structure and many other electromagnetic processes

Outline

- Electromagnetic form factors of the proton
 - Space-like region
 - Time-like region
- Parton Distribution functions (PDF) in SIDIS and Drell-Yan
- Accessible nucleon structure functions at PANDA

In connection to the opportunities offered by the future antiproton beams of FAIR

Elastic Electron-Proton Scattering

Rutherford scattering cross section (~1911)

- Non relativistic electron (E_k << m_e)
- No recoil of the target (neglected)
- Point-like target

$$\left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} = \frac{\alpha^2}{16E_k^2} \frac{1}{\sin^4(\theta/2)}$$

Mott scattering cross section (~1929)

- Relativistic electron (E_k >> m_e)
- Electron is carrying a spin
- Point-like target (for a finite Mass M)

Interaction between the electric charges of the particles matters.

Elastic Electron-Proton Scattering (Magnetic Scattering)

Elastic scattering of relativistic electrons by the magnetic moment of the proton has been predicted by Rosenbluth in 1950.

Elastic scattering of relativistic electrons from a point-like Dirac spin ½ proton

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{NS} \left[1.00 - \frac{q^2}{2M^2} \tan^2(\theta/2)\right]$$

Elastic scattering of relativistic electrons from a point-like Dirac-pauli proton

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{NS} \left[1.00 - \frac{q^2}{4M^2} \left(2(1.00 + \kappa)^2 \tan^2(\theta/2) + \kappa^2\right)\right]$$

NS: No Spin (Mott cross section)

Experimental results

Theoretical curves:

- a) Mott cross section (lab frame): a spinless point charge proton
- b) Dirac cross section: a point like proton and Dirac magnetic moment
- c) Rosenbluth cross section: point-like proton with the corrected anomalous magnetic moment mu

Results deviate from theory due to a structure factor- **the proton is not a pointlike but has finite size.**

Form Factors introduce this deviation

R Hofstadter, Rev. Mod. Phys., 28:214–254, 1956

Elastic Electron-Proton Scattering (Rosenbluth fromula)

Dirac and Pauli form factors

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{NS} \left[1.00 - \frac{q^2}{4M^2} \left(2(1.00 + \kappa)^2 \tan^2(\theta/2) + \kappa^2\right)\right]$$

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{NS} \left[F_1^2 - \frac{q^2}{4M^2} \left(2(F_1 + F_2)^2 \tan^2(\theta/2) + F_2^2\right)\right]$$

F₁ is introduced to take care of the **spread-out charge** and **spread-out Dirac magnetic** moment: Dirac Form Factor

F₂ is introduced to take care of the **spread-out Pauli magnetic moment**: Pauli Form Factor $G_E(q^2) = F_1(q^2) + \frac{q^2}{\Delta M^2} F_2(q^2)$

Electric G_F and magnetic G_M form factors: •

$$G_M(q^2) = F_1(q^2) + F_2(q^2)$$

 F_1 and F_2 or (G_F and G_M) are two independent phenomenological quantities

Need to be measured experimentally

Electron-Proton Elastic Scattering: the form factor

The resulting cross section is the cross section for scattering from a point source multiplied by the **form factor**

Proton electromagnetic form factor

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\alpha^2}{4E_1^2 \sin^4 \theta/2} \frac{E_3}{E_1} \left(\frac{G_E^2 + \tau G_M^2}{(1+\tau)} \cos^2 \frac{\theta}{2} + 2\tau G_M^2 \sin^2 \frac{\theta}{2} \right)$$

Rosenbluth separation method

Unpolarized elastic ep scattering (Born approximation)

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma_{Mott}}{d\Omega} \frac{1}{\varepsilon(1+\tau)} [\varepsilon G_E^2(Q^2) + \tau G_M^2(Q^2)], \tau = Q^2 / 4M_p^2$$
$$\varepsilon = [1 + 2(1+\tau)\tan^2(\theta_e / 2)]^{-1}$$

$$\sigma_{red} = \frac{d\sigma}{d\sigma_{Mott}} \varepsilon(1+\tau) = \varepsilon G_E^2(Q^2) + \tau G_M^2(Q^2)$$

Rosenbluth separation method

Unpolarized elastic ep scattering (Born approximation)

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma_{Mott}}{d\Omega} \frac{1}{\varepsilon(1+\tau)} [\varepsilon G_E^2(Q^2) + \tau G_M^2(Q^2)], \tau = Q^2 / 4M_p^2$$
$$\varepsilon = [1 + 2(1+\tau)\tan^2(\theta_e / 2)]^{-1}$$

C. F. Perdrisat at al. Prog. Part. Nucl. Phys. 59 (2007) 694

Polarization method (1967)

SOVIET PHYSICS - DOKLADY

VOL. 13, NO. 6

DECEMBER, 1968

PHYSICS

POLARIZATION PHENOMENA IN ELECTRON SCATTERING BY PROTONS IN THE HIGH-ENERGY REGION

Academician A. I. Akhiezer* and M. P. Rekalo

Physicotechnical Institute, Academy of Sciences of the Ukrainian SSR Translated from Doklady Akademii Nauk SSSR, Vol. 180, No. 5, pp. 1081-1083, June, 1968 Original article submitted February 26, 1967

The polarization induces a term in the cross section proportional to G_EG_M Polarized beam and target or polarized beam and recoil proton polarization

GEp Collaboration at JLab

$$R = \frac{G_E}{G_M} = -\frac{P_t}{P_\ell} \frac{\epsilon_1 + \epsilon_2}{2M} \tan(\vartheta/2),$$

JLab Polarization and Rosenbluth separation data

Contradiction between polarized and unpolarized measurements

Rosenbluth separation data

Prog. Part. Nucl. Phys. 59 (2007) 694

Data on the proton electromagnetic FFs (SL)

• Electric G_E and magnetic G_M proton form factors are analytical functions of the momentum transfer squared q^2

Electromagnetic Form Factors: the analyticity

At the threshold: $G_E(4M^2) = G_M(4M^2)$ (only s-wave) Point-like proton: $G_E(4M^2) = G_M(4M^2) = 1$

Unified frame for the description of FFs:

$$G(q^{2}) = \frac{1}{\pi} \left[\int_{4m_{\pi}^{2}}^{4m_{p}^{2}} \frac{\operatorname{Im} G(s) ds}{s - q^{2}} + \int_{4m_{p}^{2}}^{\infty} \frac{\operatorname{Im} G(s) ds}{s - q^{2}} \right]$$
$$\lim_{q^{2} \to -\infty} G_{E,M}^{SL}(q^{2}) = \lim_{q^{2} \to +\infty} G_{E,M}^{TL}(q^{2})$$

The measurement of the From Factors at large q² and in all the kinematical region: test of the analytical nature of the FFs

Measurements of proton form factors at PANDA

Feasibility studies

- Identification of the signal and suppression of the background processes
- Determination of the statistical uncertainty on the proton form factors

Measurements of proton form factors at PANDA

Main Background processes

• Production of two charged particles

 $\overline{p}p \rightarrow \mu^{+}\mu^{-}$ $\overline{p}p \rightarrow \pi^{+}\pi^{-}$ $\overline{p}p \rightarrow K^{+}K^{-}$ $\overline{p}p \rightarrow \overline{p}p$

p p p e⁺ e[−]

• Production of two charged particles + neutral/charged particle, i.e.:

 $\overline{p}p \to \pi^+ \pi^- \pi^0$ $\overline{p}p \to K^+ K^- \pi^0$

Feasibility studies: TL proton FFs @ PANDA

- Main issue: signal identification from the huge hadronic background
- > The main background is: $\overline{p}p \rightarrow \pi^+\pi^-$

Analysis chain in PANDARoot

$$\overline{p}p \rightarrow e^+ e^-$$
$$\overline{p}p \rightarrow \pi^+ \pi^-$$

Energy deposited in the EMC over the tracking momentum: E_{EMC}/p_{rec}

Energy deposited in the EMC over the tracking momentum: E_{EMC}/p_{rec}

Energy loss dE/dx in the straw tube tracker STT

Energy loss dE/dx in the straw tube tracker STT

PID variables from the EMC, STT, DIRC, MVD \rightarrow PID probability

What is the probability for the detected particle to be an electron/positron?

Clean signal \rightarrow extraction of the proton form factors from the cross section

Measurement of proton FFs in the TL region

$$\frac{d\sigma}{d\cos\theta_{CM}} \propto Norm \times \left[(1 + \cos^2\theta_{CM}) \left[G_M \right]^2 + \left[\frac{G_E}{\tau} \right]^2 (1 - \cos^2\theta_{CM}) \right] = R = \frac{|G_E|}{|G_M|}$$

$$\frac{d\sigma}{d\cos\theta_{CM}} \propto Norm \times \left[G_M \right]^2 \left[(1 + \cos^2\theta_{CM}) \left\{ \frac{R^2}{\tau} \right] - \cos^2\theta_{CM} \right] = R = \frac{|G_E|}{|G_M|}$$

$$\Rightarrow \text{ Fit to the electron/positron angular distribution in CM}$$

$$y = a \left[(1 + \cos^2\theta_{CM}) + b(1 - \cos^2\theta_{CM}) \right]$$

$$b \Rightarrow R = |G_E| / |G_M|$$

World data on TL proton form factor ratio

@ BaBar (SLAC): $e^+e^- \rightarrow \overline{p}p\gamma$

data collection over wide energy range

@ PS 170 (LEAR): $\overline{p}p \rightarrow e^+e^-$ > data collection at low energies

Data from BaBar & LEAR show different trends

@ BESIII: $e^+e^- \rightarrow \overline{p}p$

- Measurement at different energies
- Uncertainties comparable to previous experiments

@ CMD-3 (VEPP2000 collider, BINP):

- ▶ Energy scan $\sqrt{s} = 1 2 \ GeV$
- Uncertaincy comparable to the measurement by BaBar

World data on TL proton form factor ratio

Proton form factor measurements at PANDA

Measurement of proton FFs with unprecedented accuracy in e⁺e⁻ final state

E.W. Singh et al.: EPJA52, 325 (2016)

Measurements of proton FFs with muons

- **First time** measurement with **muons in final state**
- Study of radiative corrections
- Consistency check of proton form factor data
- > Test of lepton universality

Measurements of proton FFs at PANDA with muons

Measurements of proton FFs at PANDA with muons

Number of fiered layers in the muon system

Background subtraction is needed: $N_{signal} = N_{data} - N_{background}$, $(\Delta N_{signal})^2 = (\Delta N_{data})^2 + (\Delta N_{background})^2$

Measurements of proton FFs at PANDA with muons

Electromagnetic Form Factors: the analyticity

How to access the unphysical region?

Electromagnetic Form Factors: the analyticity

- M.P. Rekalo. Sov. J. Nucl. Phys., 1:760, 1965
- Adamuscin, Kuraev, Tomasi-Gustafsson and
 - F. Maas, Phys. Rev. C 75, 045205 (2007)
- C. Adamuscin, E.A. Kuraev, G. I. Gakh, ...
- Feasibility studies (J. Boucher, M. C. Mora-Espi PhD)

- Measurements of the proton effective form factor in the TL region over a large kinematical region through: $\overline{p}p \rightarrow e^+e^ \overline{p}p \rightarrow \mu^+\mu^-$
- Individual measurement of $|G_E|$ and $|G_M|$ and their ratio
- Possibility to access the relative phase of proton TL FFs
 - Polarization observables (Born approximation) give access to $G_E G_M^*$
 - Development of a transverse polarized proton target for PANDA in Mainz
- Measurement of proton FFs in the unphysical region: $\overline{p}p \rightarrow e^+e^-\pi^0$

Back-up

Transverse Polarized target at PANDA

- To shield the target region from the longitudinal 2 T magnetic field induced by the PANDA solenoid one can use a superconducting tube
- The superconducting tube could induce a magnetic field opposite to the PANDA solenoid magnetic field

Target

Beam

BSCCO-2212

Gauss (shielding factor >10⁴)

Current/future experiments: BESII-PANDA

	BESIII	PANDA
s [(GeV/c) ²]	4 - 9.5	5 - 14
$R= G_E / G_M $	9 % - 35 %	1.4 % - 41 %

Proton form factors with a polarized proton target @ PANDA

Access the relative phase between the proton form factors:

- > Time-Like form factors are complex: $G_E = |G_E| e^{i\phi E}$ $G_M = |G_M| e^{i\phi M}$
- > Differential cross section of unpolarized signal reaction $\overline{p}p \rightarrow e^+e^-$

$$\frac{d\sigma}{d\cos\theta_{CM}} \propto Norm \times \left[(1 + \cos^2\theta_{CM}) \left| G_M \right|^2 + \frac{\left| G_E \right|^2}{\tau} (1 - \cos^2\theta_{CM}) \right]$$

> with transverse polarized target:

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_0 A_{1,y} \propto \sin 2\Theta \mathrm{Im}\left(G_M G_E^*\right)$$

Proton FFs in the unphysical region

Feasibility studies were performed @ p=1.7 GeV/c with:

- q²=0.605 ±0.005, 2.0±0.125 (GeV/c²)², at each q²:
 - $10^{\circ} < \theta_{\pi 0} < 30^{\circ}, 80^{\circ} < \theta_{\pi 0} < 100^{\circ} \text{ and } 140^{\circ} < \theta_{\pi 0} < 160^{\circ}$ (Lab. System)

