

Event Topology Reconstruction in the CBM Experiment at FAIR

V. Akishina¹, I. Kisel^{1,2,3}, P. Kisel^{1,3}, P. Senger³, I. Vassiliev³, M. Zyzak³

- ¹ Goethe University Frankfurt am Main
- ² FIAS Frankfurt Institute for Advanced Studies
- ³ GSI Helmholtz Center for Heavy Ion Research

Reconstruction Challenge in CBM

- Future fixed-target heavy-ion experiment
- 10⁷ Au+Au collisions/sec
- ~ 1000 charged particles/collision
- Non-homogeneous magnetic field
- Double-sided strip detectors (85% fake space-points)

Full event reconstruction will be done on-line at the First-Level Event Selection (FLES) and off-line using the same FLES reconstruction package.

Cellular Automaton (CA) Track Finder Kalman Filter (KF) Track Fitter KF short-lived Particle Finder

All reconstruction algorithms are vectorized and parallelized.

Many-Core CPU/GPU Architectures

Future systems are heterogeneous. Fundamental redesign of traditional approaches to data processing is necessary

Stages of Event Reconstruction

- Conformal Mapping
- Hough Transformation
- Track Following
- Cellular Automaton

// Ring Finder (Particle ID)

- Hough Transformation
- Elastic Neural Net

Kalman Filter

Kalman Filter based Track Fit

Estimation of the track parameters at one or more hits along the track – Kalman Filter (KF)

Nowadays the Kalman Filter is used in almost all HEP experiments

KF as a recursive least squares method

Kalman Filter (KF) Track Fit Library

Kalman Filter Methods

Kalman Filter Tools:

- KF Track Fitter
- KF Track Smoother
- Deterministic Annealing Filter

Kalman Filter Approaches: • Conventional DP KF

- · Conventional SP KF
- Square-Root SP KF
- UD-Filter SP
- Gaussian Sum Filter
- 3D (x,y,z) and 4D (x,y,z,t) KF

Track Propagation:

- Runge-Kutta
- Analytic Formula

Detector Types:

- Pixel
- Strip
- Tube
- TPC

Implementations

Vectorization (SIMD):

- Header Files
- Vc Vector Classes
- ArBB Array Building Blocks
- OpenCL

Parallelization (many-cores):

- Open MP
- ITBB
- ArBB
- OpenCL

Precision:

- single precision SP
- double precision DP

Strong many-core scalability of the Kalman filter library

with I. Kulakov, H. Pabst* and M. Zyzak (*Intel)

Full Portability of the KF Track Fit

- Scalability with respect to the number of logical cores in a CPU is one of the most important parameters of the algorithm.
- The scalability on the Intel Xeon Phi coprocessor is similar to the CPU, but running four threads per core instead of two.
- In case of the graphics cards the set of tasks is divided into working groups of size *local item size* and distributed among compute units (or streaming multiprocessors) and the load of each compute unit is of the particular importance.

Single node KF Track Fit performance: 2*CPU+2*GPU = 109 tracks/s = (100 tracks/event)* 107 events/s = 107 events/s

Fast, precise and portable Kalman filter library

Cellular Automaton (CA) Track Finder

Useful for complicated event topologies with large combinatorics and for parallel hardware

CBM CA Track Finder: Efficiency

ICNFP, Crete, 25.08.2017 9/1

CA Track Finder at High Track Multiplicity

A number of minimum bias events is gathered into a group (super-event), which is then treated by the CA track finder as a single event

Stable reconstruction efficiency and time as a second order polynomial w.r.t. to track multiplicity

Time-based (4D) Track Reconstruction with CA Track Finder

•	The beam in the CBM will have no bunch structure, but continuous.
•	Measurements in this case will be $4D$ (x y z t)

Significant overlapping of events in the detector system.

Reconstruction of time slices rather than events is needed.

	ed-up factor due to paralle	elization within t	the time-slice
dn-peeds	 CA Track Finder Initialisation Triplets Construction Tracks Construction 		
8	▲ Final Stage		
6			
4		_ _	
2	===-		
0 0	5	10	15 20 N Logical Cores
	Total CA time = 849 ms	1	00 mbias events in a time-slice

Efficiency, %	3D	3+1 D	4D
All tracks	83.8	80.4	83.0
Primary high- p	96.1	94.3	92.8
Primary low- p	79.8	76.2	83.1
Secondary high- p	76.6	65.1	73.2
Secondary low- p	40.9	34.9	36.8
Clone level	0.4	2.5	1.7
Ghost level	0.1	8.2	0.3
Time/event/core, ms	8.2	31.5	8.5

4D track reconstruction is scalable with the speed-up factor of 10.1; 3D reconstruction time 8.2 ms/event is recovered in 4D case

Total CA time = 84 ms

4D Event Building at 10 MHz

Hits at high input rates

From hits to tracks to events

Reconstructed tracks clearly represent groups, which correspond to the original events 83% of single events, no splitted events, further analysis with TOF information at the vertexing stage

KF Particle: Reconstruction of Vertices and Decayed Particles

$$\overline{\Omega}^+ \to \overline{\Lambda} K^+ \\ \downarrow \overline{p} \pi^+$$

```
KFParticle Lambda(P, Pi);
                                            // construct anti Lambda
Lambda.SetMassConstraint(1.1157);
                                            // improve momentum and mass
KFParticle Omega(K, Lambda);
                                            // construct anti Omega
PV -= (P; Pi; K);
                                            // clean the primary vertex
PV += Omega:
                                           // add Omega to the primary vertex
Omega.SetProductionVertex(PV);
                                           // Omega is fully fitted
(K; Lambda).SetProductionVertex(Omega);
                                           // K, Lambda are fully fitted
(P; Pi).SetProductionVertex(Lambda);
                                            // p, pi are fully fitted
```

Concept:

- Mother and daughter particles have the same state vector and are treated in the same way
- · Reconstruction of decay chains
- Kalman filter based
- Geometry independent
- Vectorized
- Uncomplicated usage

Functionality:

- Construction of short-lived particles
- Addition and subtraction of particles
- Transport
- Calculation of an angle between particles
- Calculation of distances and deviations
- Constraints on mass, production point and decay length
- KF Particle Finder

Reconstruction of decays with a neutral daughter by the missing mass method:

KF Particle provides a simple and direct approach to physics analysis (used in CBM, ALICE and STAR)

KF Particle Finder for Physics Analysis and Selection

(mbias: 1.4 ms; central: 10.5 ms)/event/core

KF Particle Finder for Physics Analysis and Selection

Clean Probes of Collision Stages

AuAu, 10 AGeV, 3.5M central UrQMD events, MC PID

Clean Probes of Collision Stages

CBM Standalone First Level Event Selection (FLES) Package

The FLES package is vectorized, parallelized, portable and scalable up to 3 200 CPU cores

Summary

- ✓ CBM will explore the QCD phase diagram in the region of high net baryon densities
- ✓ Efficient and clean reconstruction of long-lived primary particles with the CA track finder
- ✓ KF particle finder is a universal platform for short-lived particles reconstruction and physics analysis in on- and off-line modes
- ✓ Clean reconstruction of long- and short-lived particles produced at different stages of heavy-ion collisions
- √ Reconstruction is highly parallelized and vectorized for use on many-core CPU/Phi/GPU computer architectures
- ✓ Towards a common package for full event topology reconstruction in the CBM, ALICE and STAR heavy ion experiments