Event Topology Reconstruction in the CBM Experiment at FAIR

V. Akishina ${ }^{1}$, I. Kisel ${ }^{1,2,3}$, P. Kisel ${ }^{1,3}$, P. Senger ${ }^{3}$, I. Vassiliev ${ }^{3}$, M. Zyzak ${ }^{3}$
${ }^{1}$ Goethe University Frankfurt am Main
${ }^{2}$ FIAS Frankfurt Institute for Advanced Studies
${ }^{3}$ GSI Helmholtz Center for Heavy Ion Research

Reconstruction Challenge in CBM

- Future fixed-target heavy-ion experiment
- 10^{7} Au+Au collisions/sec
- ~ 1000 charged particles/collision
- Non-homogeneous magnetic field
- Double-sided strip detectors (85\% fake space-points)

Full event reconstruction will be done on-line at the First-Level Event Selection (FLES) and off-line using the same FLES reconstruction package.

Cellular Automaton (CA) Track Finder Kalman Filter (KF) Track Fitter KF short-lived Particle Finder

All reconstruction algorithms are vectorized and parallelized.

Many-Core CPU/GPU Architectures

Future systems are heterogeneous. Fundamental redesign of traditional approaches to data processing is necessary

Stages of Event Reconstruction

// Track Finder

- Conformal Mapping
- Hough Transformation
- Track Following
- Cellular Automaton

- Hough Transformation
- Elastic Neural Net

- Kalman Filter

// Short-Lived Particles Finder

- Kalman Filter

Kalman Filter based Track Fit

Estimation of the track parameters at one or more hits along the track - Kalman Filter (KF)

Kalman Filter:

1. Start with an arbitrary initialization.
2. Add one hit after another.
3. Improve the state vector.
4. Get the optimal parameters after the last hit.

Nowadays the Kalman Filter is used in almost all HEP experiments

Kalman Filter Methods

Kalman Filter Tools:

- KF Track Fitter
- KF Track Smoother
- Deterministic Annealing Filter

Kalman Filter Approaches:

- Conventional DP KF
- Conventional SP KF
- Square-Root SP KF
- UD-Filter SP
- Gaussian Sum Filter
-3D (x, y, z) and 4D (x, y, z, t) KF
Track Propagation:
- Runge-Kutta
- Analytic Formula

Detector Types:

- Pixel
- Strip
- Tube
- TPC

Implementations

Vectorization (SIMD):

- Header Files
- Vc Vector Classes
- ArBB Array Building Blocks
- OpenCL

Parallelization (many-cores):

- Open MP
- ITBB
- ArBB
- OpenCL

Precision:

- single precision SP
- double precision DP

Strong many-core scalability of the Kalman filter library
with I. Kulakov, H. Pabst* and M. Zyzak

Full Portability of the KF Track Fit

- Scalability with respect to the number of logical cores in a CPU is one of the most important parameters of the algorithm.
- The scalability on the Intel Xeon Phi coprocessor is similar to the CPU, but running four threads per core instead of two.
- In case of the graphics cards the set of tasks is divided into working groups of size local item size and distributed among compute units (or streaming multiprocessors) and the load of each compute unit is of the particular importance.

Single node KF Track Fit performance: $2^{*} \mathrm{CPU}+2^{*} \mathrm{GPU}=10^{9}$ tracks/s $=(100 \text { tracks/event })^{*} 10^{7}$ events $/ \mathrm{s}=10^{7}$ events $/ \mathrm{s}$

Fast, precise and portable Kalman filter library

Cellular Automaton (CA) Track Finder

Useful for complicated event topologies with large combinatorics and for parallel hardware

CBM CA Track Finder: Efficiency

Efficient and stable event reconstruction

CA Track Finder at High Track Multiplicity

A number of minimum bias events is gathered into a group (super-event), which is then treated by the CA track finder as a single event

Stable reconstruction efficiency and time as a second order polynomial w.r.t. to track multiplicity

2) Time-based (4D) Track Reconstruction with CA Track Finder

- The beam in the CBM will have no bunch structure, but continuous.
- Measurements in this case will be 4D (x, y, z, t).
- Significant overlapping of events in the detector system.
- Reconstruction of time slices rather than events is needed.

Total CA time $=84 \mathrm{~ms}$

Efficiency, \%	3 D	$3+1 \mathrm{D}$	4 D
All tracks	83.8	80.4	83.0
Primary high- p	96.1	94.3	92.8
Primary low-p	79.8	76.2	83.1
Secondary high- p	76.6	65.1	73.2
Secondary low-p	40.9	34.9	36.8
Clone level	0.4	2.5	1.7
Ghost level	0.1	8.2	0.3
Time/event/core, ms	8.2	31.5	8.5

From hits to tracks to events

Reconstructed tracks clearly represent groups, which correspond to the original events 83% of single events, no splitted events, further analysis with TOF information at the vertexing stage

3) KF Particle: Reconstruction of Vertices and Decayed Particles

$$
\begin{aligned}
\bar{\Omega}^{+} & \rightarrow \bar{\Lambda} \mathrm{K}^{+} \\
& \hookrightarrow \overline{\mathrm{P}} \pi^{+}
\end{aligned}
$$

KFParticle Lambda(P, Pi);
Lambda.SetMassConstraint(1.1157);
KFParticle Omega(K, Lambda);
PV -= (P; Pi; K);
PV += Omega;
Omega.SetProductionVertex(PV);
(K; Lambda).SetProductionVertex(Omega);
(P; Pi).SetProductionVertex(Lambda);
// construct anti Lambda
// improve momentum and mass
// construct anti Omega
// clean the primary vertex
// add Omega to the primary vertex
// Omega is fully fitted
// K, Lambda are fully fitted
// p, pi are fully fitted

Concept:

- Mother and daughter particles have the same state vector and are treated in the same way
- Reconstruction of decay chains
- Kalman filter based
- Geometry independent
- Vectorized
- Uncomplicated usage

Functionality:

- Construction of short-lived particles
- Addition and subtraction of particles
- Transport
- Calculation of an angle between particles
- Calculation of distances and deviations
- Constraints on mass, production point and decay length
- KF Particle Finder

Reconstruction of decays with a neutral daughter by the missing mass method:

KF Particle Finder for Physics Analysis and Selection

Clean Probes of Collision Stages

AuAu, $10 \mathrm{AGeV}, 3.5 \mathrm{M}$ central UrQMD events, MC PID

Clean Probes of Collision Stages

CBM Standalone First Level Event Selection (FLES) Package

The FLES package is vectorized, parallelized, portable and scalable up to 3200 CPU cores

Summary

\checkmark CBM will explore the QCD phase diagram in the region of high net baryon densities
$\checkmark \quad$ Efficient and clean reconstruction of long-lived primary particles with the CA track finder
$\checkmark \quad$ KF particle finder is a universal platform for short-lived particles reconstruction and physics analysis in on- and off-line modes
\checkmark Clean reconstruction of long- and short-lived particles produced at different stages of heavy-ion collisions
\checkmark Reconstruction is highly parallelized and vectorized for use on many-core CPU/Phi/GPU computer architectures
\checkmark Towards a common package for full event topology reconstruction in the CBM, ALICE and STAR heavy ion experiments

