

THE COMPRESSED BARYONIC MATTER EXPERIMENT AT FAIR

Joachim Stroth Goethe University Frankfurt am Main / GSI PANIC 2017, Beijing, September 2017

The QCD challenge

- From particles (quarks) to hadrons to nuclei and to matter (NS merger as site for r-process)
- o Governed by non-perturbative QCD, ab-initio approach complicated
- Experimental approach to QCD matter: heavy-ion collisions, gravitational waves

supra-normal nuclear densities

Density profile across a merging NS binary system. Taken t = 1.4 ms (t = 0 see below).

M. Hanauske, L. Rezzolla et al. J.Phys.Conf.Ser. 878 (2017) no.1, 012031

A. Bauswein et al. [1302.6530]

The QCD phase diagram

Open questions:

- Origin of mass?
- Nature of confinement?
- Role of condensates?
- EOS of dense/hot matter

The FAIR Facility

FAIR Groundbreaking Ceremony June 2017

2021 finish concrete pouring – 2023 start installation CBM/HADES – 2025 full operation.

September 1-5, 2017

QCD physics at FAIR

- Hadron- and Quark Matter Physics (CBM/HADES)
- Hadron Spectroscopy and Structure (PANDA)
- Properties and Reactions of Rare Isotope (NUSTAR)

MOTIVATION

CBM - "nomen est omen" - Cloudy Bag Model ;)

A lot already known about nucleons and their excitations from (lattice) QCD:

- Confinement of light quarks nothing to do with flux tubes. Rather appears because the condensates are suppressed between the valence quarks.
- Resonance properties substantially driven by cloudmeson core final state interaction.
 - L. Karatidis et al., arXiv:1608.03051 J. M. M. Hall et al., arXiv:1411.3402

Chiral symmetry restoration

- \circ in-medium a_1/ρ spectral functions. Trend seen like conjectured by Rapp/Hohler.
 - H. Meyer et al. arXiv: 1212.4200 & INPC2016
- Likely no generation of mass without confinement.

What does it take, to force the quarks forming a giant bubble?

Chiral Perturbation Theory:

- Provides prediction for chiral order parameter a.f.o. baryon
- Sees strong repulsion (at low to moderate temperatures.

J.W. Holt, M. Rho, W. Weise arXiv1411.6681

Exploration of the High- μ_B Region

Reach:

Temperature and chemical potential extracted from particle multiplicities and assuming thermalization

Speed:

Mean event rates before event selection. Note the luminosity drop for colliders at low beam energy.

Heavy-ion collisions at SIS100 energies

- Nearly complete stopping leads to baryonrich matter in the overlap zone.
- Generally shorter lifetime and larger densities as beam energy goes from 1 to 10 A GeV.

I.C. Arsene et al., Phys. Rev. C 75, 24902 (2007)

Physics addressed by CBM

The QCD Equation-of-State

- Collective behavior (flow) 0
- Multi-strange baryons \bigcirc

Search for novel phases and 1st order phase transition

- e-b-e observables (higher-moments) \bigcirc
- Excitation function of hadron multiplicities and virtual 0 photons

Path to restoration of chiral symmetry

High-precision invariant mass distributions low- and 0 intermediate mass range

Strange matter

- (Double-) lambda hypernuclei \bigcirc
- Meta-stable objects (e.g. strange dibaryons)

Charm production (and propagation) at threshold

- Open-charm in pp, pA 0
- Backward production in pA (R_{pA}) 0

 Λ/π

×

THE DETECTOR SYSTEM

The CBM cave

The CBM strategy

- 10⁵ 10⁷ Au+Au reactions/sec
- determination of displaced vertices ($\sigma \approx 50 \ \mu m$)
- identification of leptons and hadrons
- fast and radiation hard detectors and FEE
- free-streaming readout electronics
- high speed data acquisition and online event selection
- 4-D event reconstruction

CBM Technical Developments

SC Magnet: JINR Dubna

MRPC ToF Wall: Beijing, Bucharest, Darmstadt, Frankfurt, Hefei, Heidelberg, Moscow, Rossendorf, Wuhan, Zagreb

Transition Radiation Detector: Bucharest, Frankfurt, Heidelberg, Münster

Micro-Vertex Detector: Frankfurt, Strasbourg

RICH Detector: Darmstadt, Giessen, St. Petersburg, Wuppertal

Forward calorimeter: Moscow, Prague, Rez

Silicon Tracking System: Darmstadt, Dubna, Krakow, Kiev, Kharkov, Moscow, St. Petersburg, Tübingen

Muon detector: Kolkata + 13 Indian Inst., Gatchina, Dubna

DAQ and online event selection: Darmstadt, Frankfurt, Kharagpur, Warsaw

CBM FAIR Phase 0 experiments

- 1. Install, commission and use 430 out of 1100
 - CBM RICH multi-anode photo-multipliers (MAPMT) in HADES RICH photon detector
- 2. Install, commission and use
 - > 10% of the CBM TOF modules including read-out chain at STAR/RHIC (BES II 2019/2020)

mCBM

 $_{\odot}$ Pre-series detector modules will be arranged to track charged particles v

- $_{\odot}$ Test full read-out chain with free streaming front-ends
- $_{\odot}$ Operate starting from 2019 on at SIS18

 $_{\odot}$ On-line select Lambda decays by track topology only

- Reconstruction performance based on 10⁸ simulated UrQMD collisions of Ni-Ni at 1,93 AGeV
- Technical goal: reach respective statistics in less than a minute data taking

PERFORMANCE EXAMPLES

CBM readout and online systems

Novel readout system

- no hardware trigger on events, free streaming triggerless data
- o detector hits with time stamps,
- o full online 4-D track and event reconstruction
- analysis of 10 MHz event rate implemented, only very moderate losses in efficiency

Strange particle production: Σ^+ & Σ^-

NEW: Identification of Σ^+ and Σ^- via their decay topology

$\Sigma^+ \rightarrow p \pi^0$	$\overline{\Sigma}^+ \longrightarrow \overline{p} \pi^0$	BR = 51.6%
$\Sigma^+ \rightarrow n\pi^+$	$\overline{\Sigma}^+ \longrightarrow \overline{n} \pi^-$	BR = 48.3%
$\Sigma^{-} \rightarrow n\pi^{-}$	$\overline{\Sigma} \rightarrow \overline{n}\pi^{-}$	BR = 99.8%

Method:

- Find all primary and secondary tracks, use TOF PID for secondary track
- Search whether two would fit together with a kink
- o From momentum conservation get momentum of neutral particle
- o Assume e.g. Σ^- decay, calculate (missing) mass of neutral particle
- o Select neutron candidates, recalculate Σ mass

Reconstruct a neutral daughter from the mother and the charged daughter

Reconstruct Σ mass spectrum from the charged and obtained neutral daughters

Di-electron measurements with CBM

Au-Au collisions at 8 A GeV, full Monte-Carlo.

Input cocktail

Reconstructed in acceptance

Croatia: Split Univ. China: CCNU Wuhan Tsinghua Univ. USTC Hefei CTGU Yichang Czech Republic: CAS, Rez Techn. Univ.Prague France: IPHC Strasbourg Hungary: KFKI Budapest Budapest Univ.

Germany: Darmstadt TU FAIR Frankfurt Univ. IKF Frankfurt Univ. FIAS Frankfurt Univ. ICS **GSI** Darmstadt Giessen Univ. Heidelberg Univ. P.I. Heidelberg Univ. ZITI HZ Dresden-Rossendorf KIT Karlsruhe Münster Univ. Tübingen Univ. Wuppertal Univ. **ZIB Berlin**

India:Aligarh Muslim Univ.Bose Inst. KolkataPanjab Univ.Rajasthan Univ.Univ. of JammuUniv. of KashmirUniv. of CalcuttaB.H. Univ. VaranasiTIVECC KolkatadorfIOP BhubaneswarIIT KharagpurIIT IndoreGauhati Univ.

Korea: Pusan Nat. Univ.

Poland: AGH Krakow Jag. Univ. Krakow Silesia Univ. Katowice Warsaw Univ. Warsaw TU

Romania: NIPNE Bucharest Univ. Bucharest Russia:

IHEP ProtvinoTINR TroitzkKITEP MoscowKurchatov Inst., MoscowLHEP, JINR DubnaLIT, JINR DubnaMEPHI MoscowObninsk Univ.PNPI GatchinaSINP MSU, MoscowSt. Petersburg P. Univ.Ioffe Phys.-Tech. Inst. St. Pb.

T. Shevchenko Univ. Kiev Kiev Inst. Nucl. Research

60 institutions, 530 members

Summary

CBM scientific program at SIS100:

- Exploration of the QCD phase diagram in the region of neutron star core densities
 - \rightarrow large discovery potential.

First measurements with CBM:

O High-precision multi-differential measurements of hadrons incl. multistrange hyperons, hypernuclei and dileptons for different beam energies and collision systems
→ terra incognita.

Status of experiment preparation:

- Prototype detector performances fulfill CBM requirements.
- 7 TDRs approved, 4 TDRs in preparation.

FAIR Phase 0:

- HADES with CBM RICH photon detector, use CBM detectors at STAR/BNL, BM@N/JINR, NA61/SPS.
- mCBM@SIS18 including DAQ and FLES for full system test