

Colloquium GSI Darmstadt December 19, 2017

Karlheinz Meier Ruprecht-Karls-Universität Heidelberg

meierk@kip.uni-heidelberg.de @brainscales

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

"We may compare a man in the process of computing a real number with a machine which is only capable of a finite number of conditions"

On computable numbers, with an application to the Entscheidungsproblem published 1937 in Proceedings of the London Mathematical Society

The Turing Machine

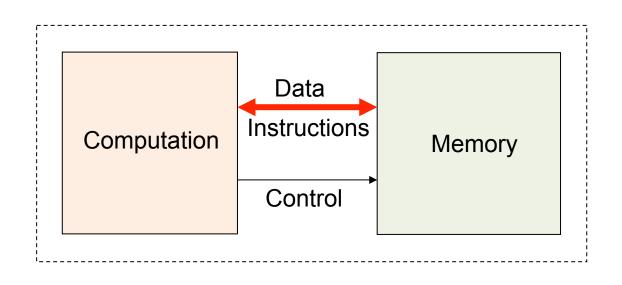
Modelled after a human executing a set of computational instructions:

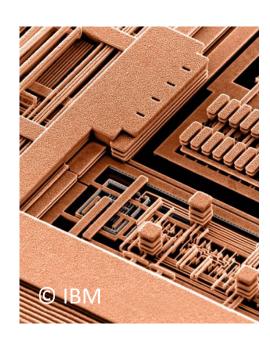
- 1.Limited size of internal storage
- → finite number of states
- 2.Infinite size of external storage but only a fraction can be used at a given time t
- 1. + 2. uniquely determine the state of the machine at time t+1

Each Turing machine uniquely represents an algorithm

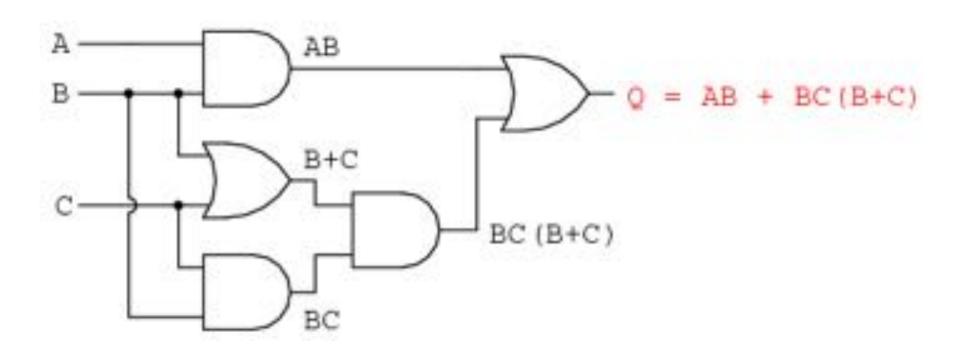
Realizing the Turing Machine The von Neumann Architecture

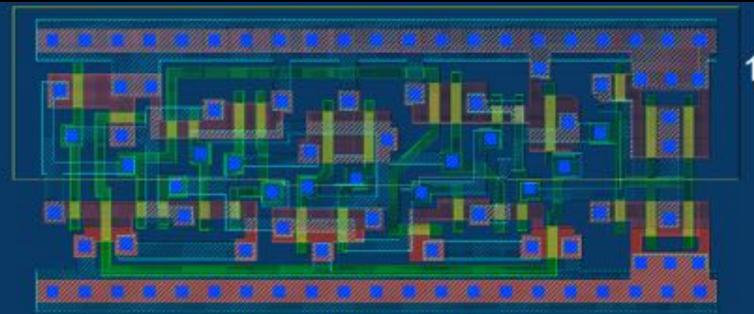
- Data and instructions stored in memory
- Content of memory addressable by location
- Instructions executed sequentially unless order is explicitly modified
- Memory and Computation physically separated





Realizing the von Neumann Architecture
Claude Shannon: From algebra to logic circuits

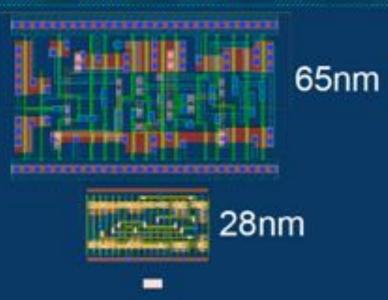


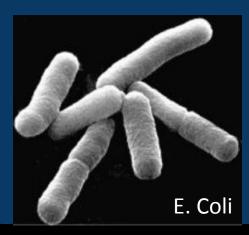


180nm

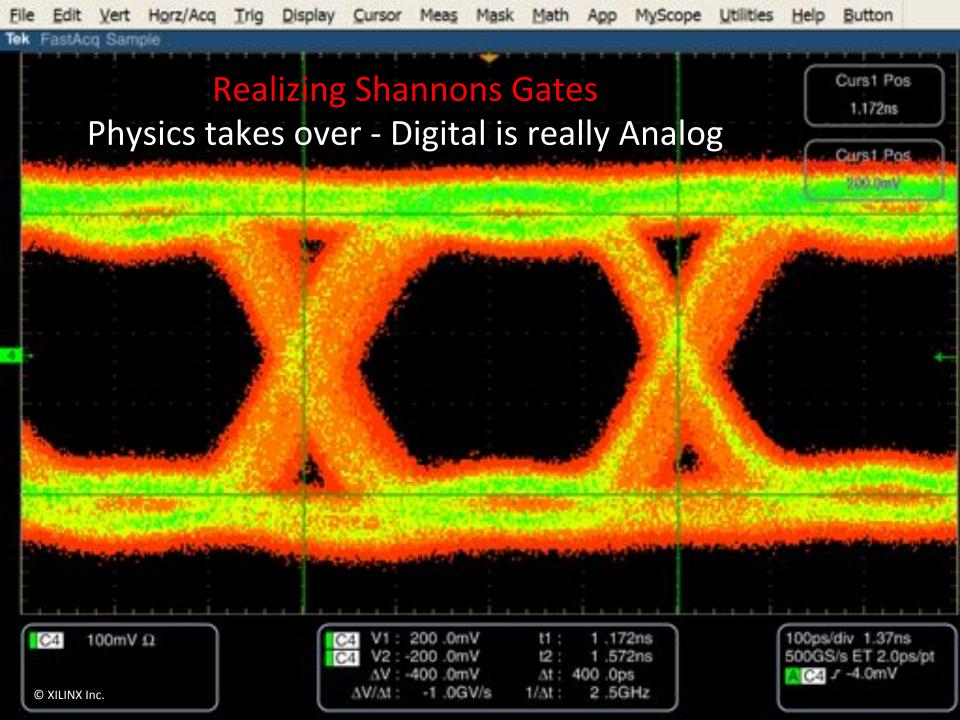
D-Flip-Flop
Drawn to Scale

- 1000 nm

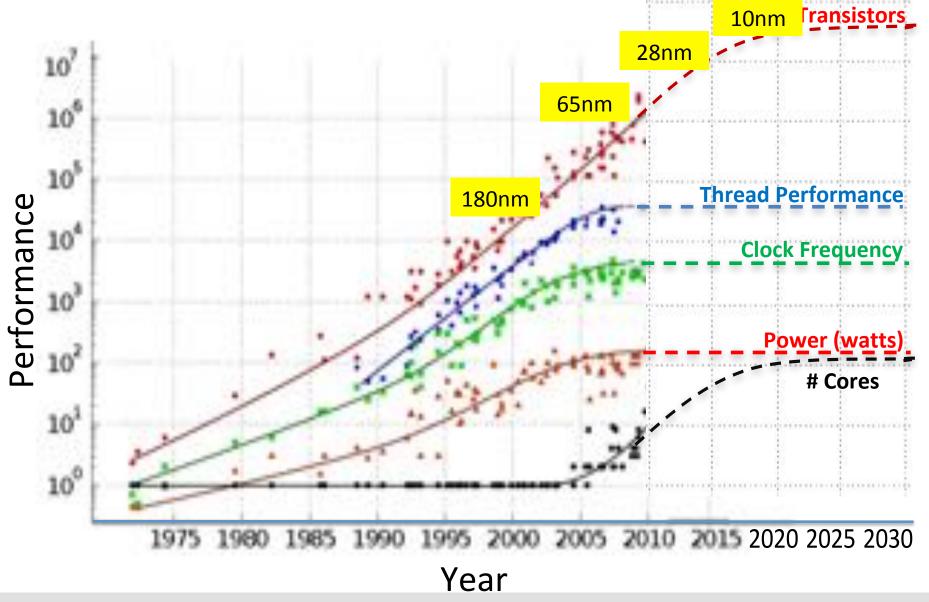


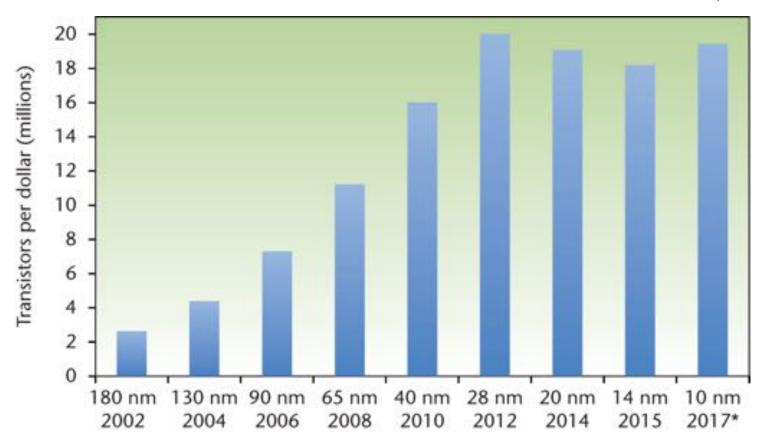


© H. Eisenreich, TU Dresden



Limits of Technology Scaling





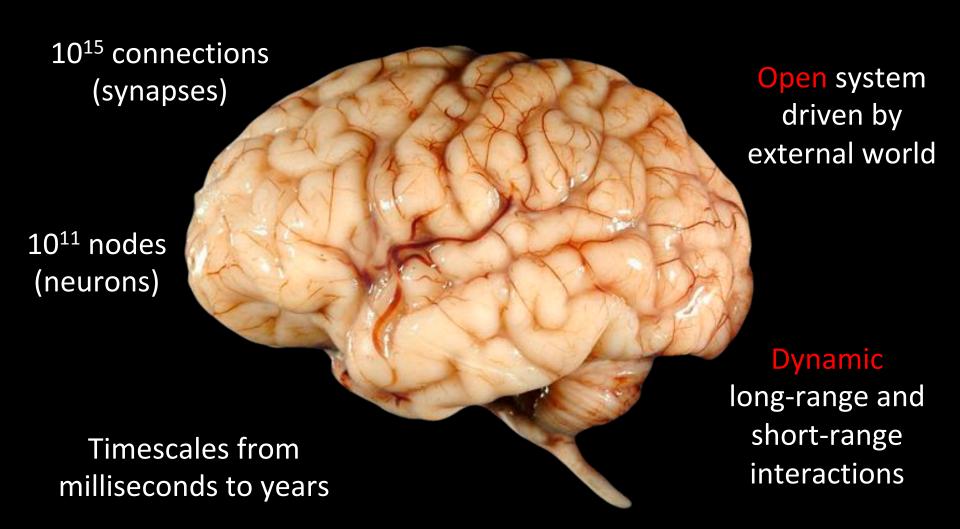
No more progress from smaller transistors

New ARCHITECTURES suddenly interesting!

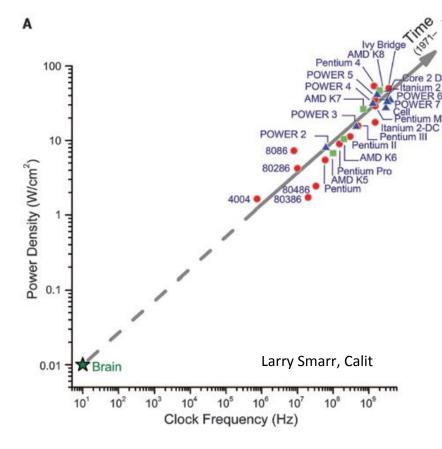
Non-von Neumann

Non-Turing

The Brain – Extreme Matter



Stochastic on the microscopic level

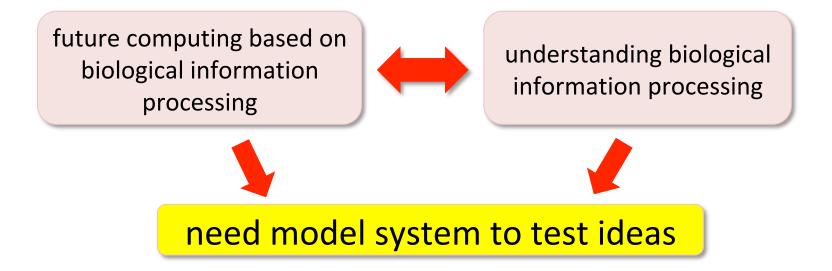


Assets of brain computing

- Energy efficiency
- Compactness
- > Fault tolerance
- > Speed
- Configuration and learning replace programming
- Scalability

Conventional computing is moving away from the brain

Why brain inspired computing?



Two fundamentally different modeling approaches:

- NUMERICAL MODEL (Turing)
 represents model parameters as binary numbers
- PHYSICAL MODEL (not Turing)
 represents model parameters as physical quantities
 → voltage, current, charge (like the biological brain)

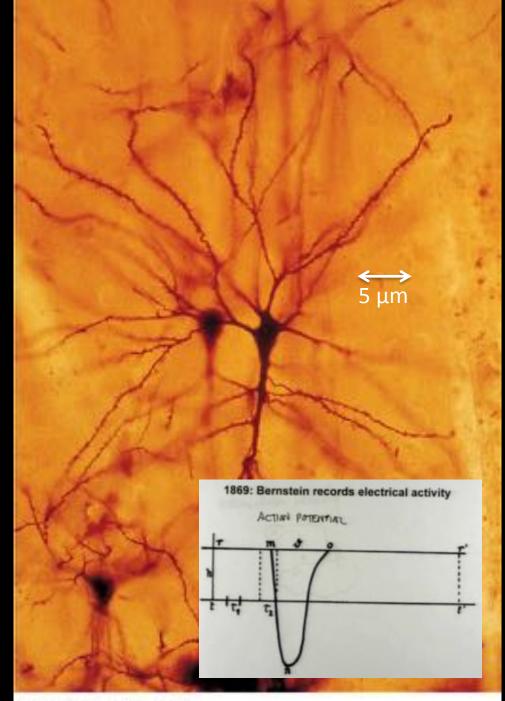
can be combined to form a hybrid system

Herrmann v. Helmholtz (1821-1894) Julius Bernstein (1839-1917) Santiago Ramón y Cajal (1852-1934)

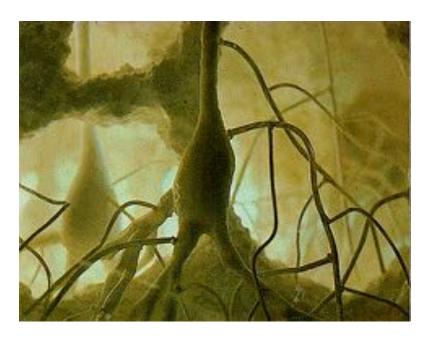
Individual cells in the brain are spatially separated constituents

"interaction
over a distance"
and

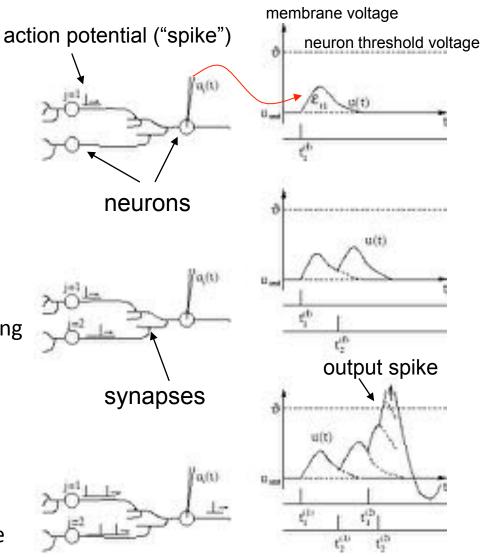
"spatial and temporal integration"

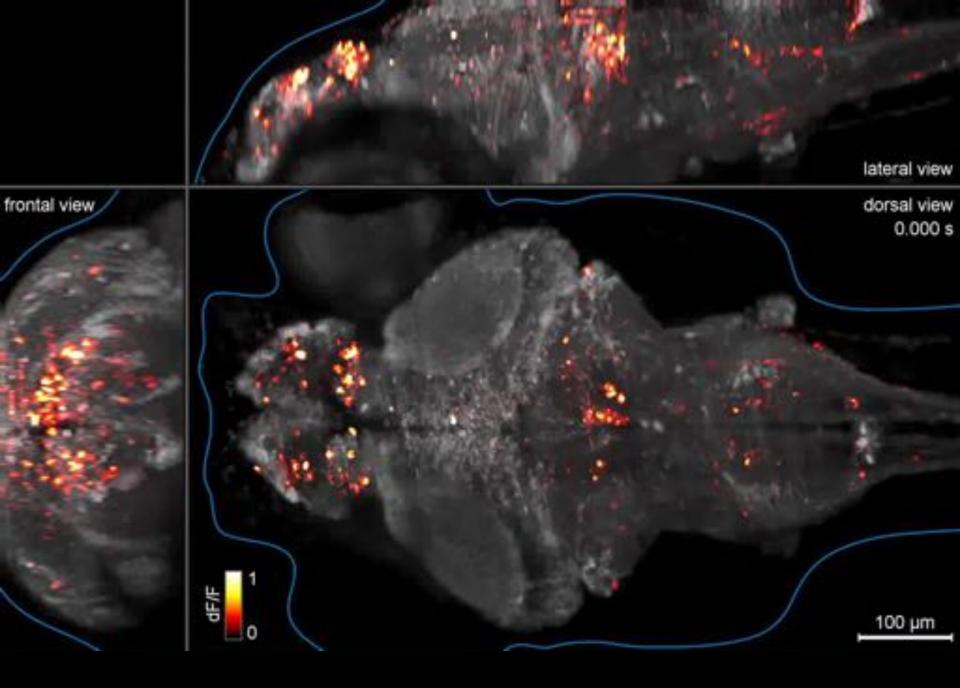


Basics of neural communication



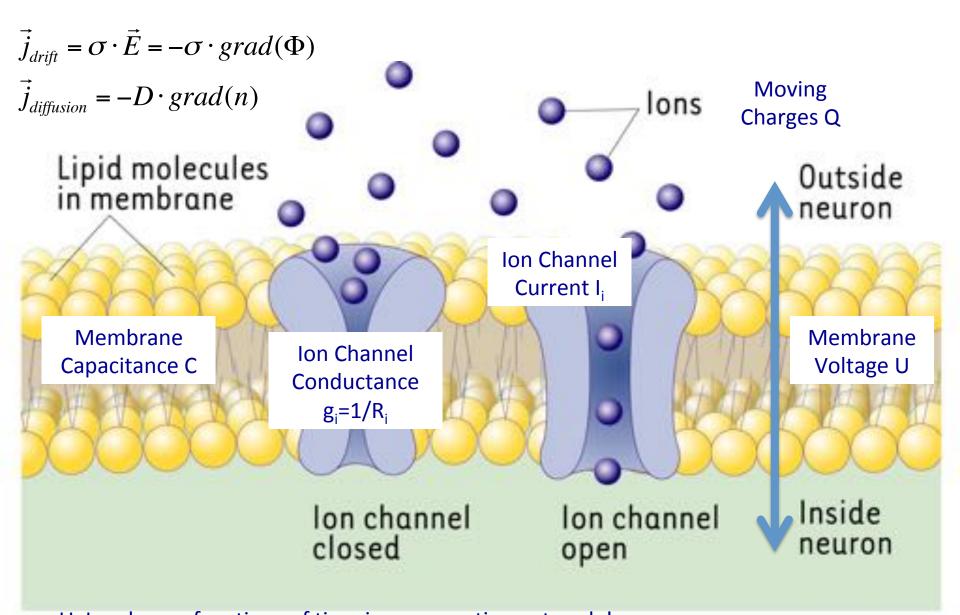
- Threshold for non-linear response leading to all-or-none law (spikes)
- neurons integrate over space and timecharacteristic time constants
- temporal correlation is important
- mixed-signal system:
 action potential membrane voltage





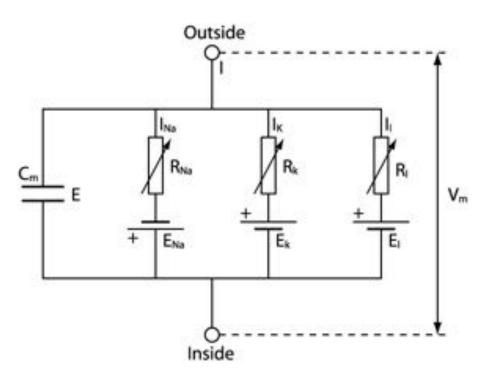
Ahrens et al, *Nature Methods* **10**, 413–420 (2013)

Some Electrical Quantities of a real Neuron Membrane

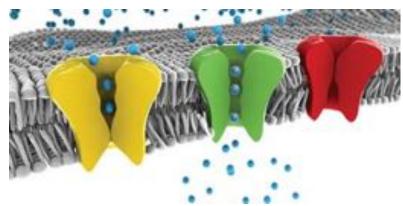


U, I and g are functions of time in an operating network!

Current theories and modelling are treating these quantities only (few exceptions)



Hodgkin-Huxley 1952 Describing the non-linearity

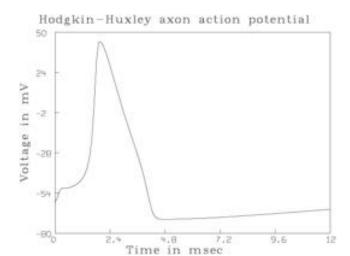


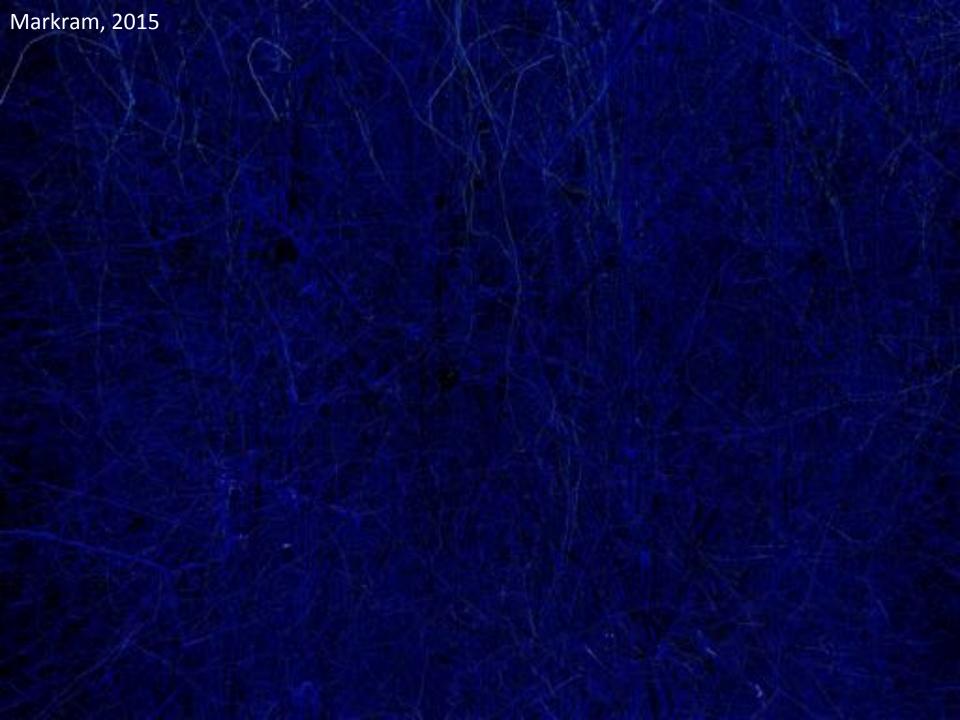
$$I = C_m \frac{dV_m}{dt} + \bar{g}_K n^4 (V_m - V_K) + \bar{g}_{Na} m^3 h (V_m - V_{Na}) + \bar{g}_l (V_m - V_l),$$

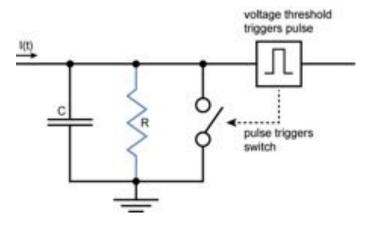
$$\frac{dn}{dt} = \alpha_n(V_m)(1-n) - \beta_n(V_m)n$$

$$\frac{dm}{dt} = \alpha_m(V_m)(1-m) - \beta_m(V_m)m$$

$$\frac{dh}{dt} = \alpha_h(V_m)(1-h) - \beta_h(V_m)h$$



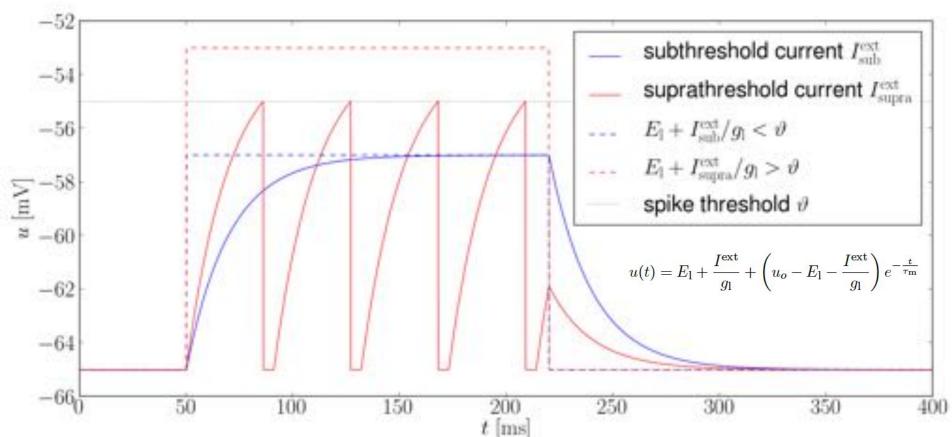




Leaky-integrate-and-fire (LIF)

$$C_{\rm m} \frac{du}{dt} = g_{\rm l}(E_{\rm l} - u) + I^{\rm syn} + I^{\rm ext}$$

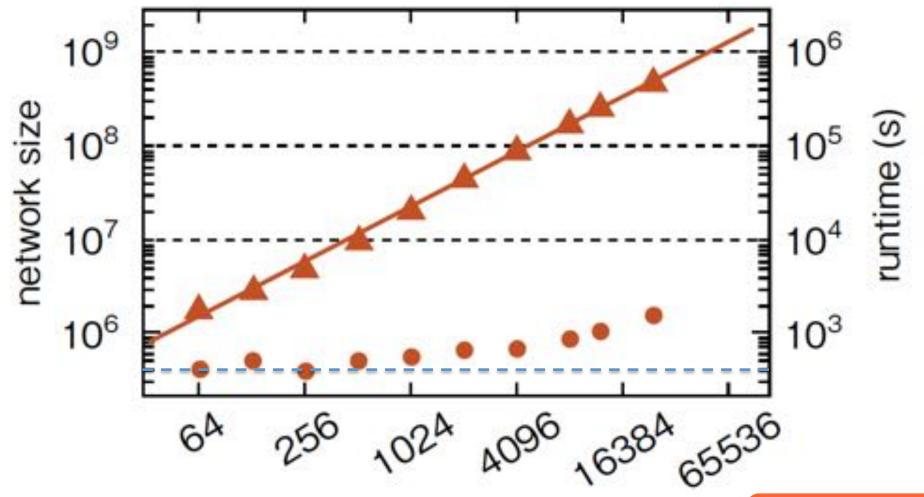
$$u(t_{\rm spike} < t \le t_{\rm spike} + \tau_{\rm ref}) = \varrho$$



PhD, Mihai Petrovici, 2015

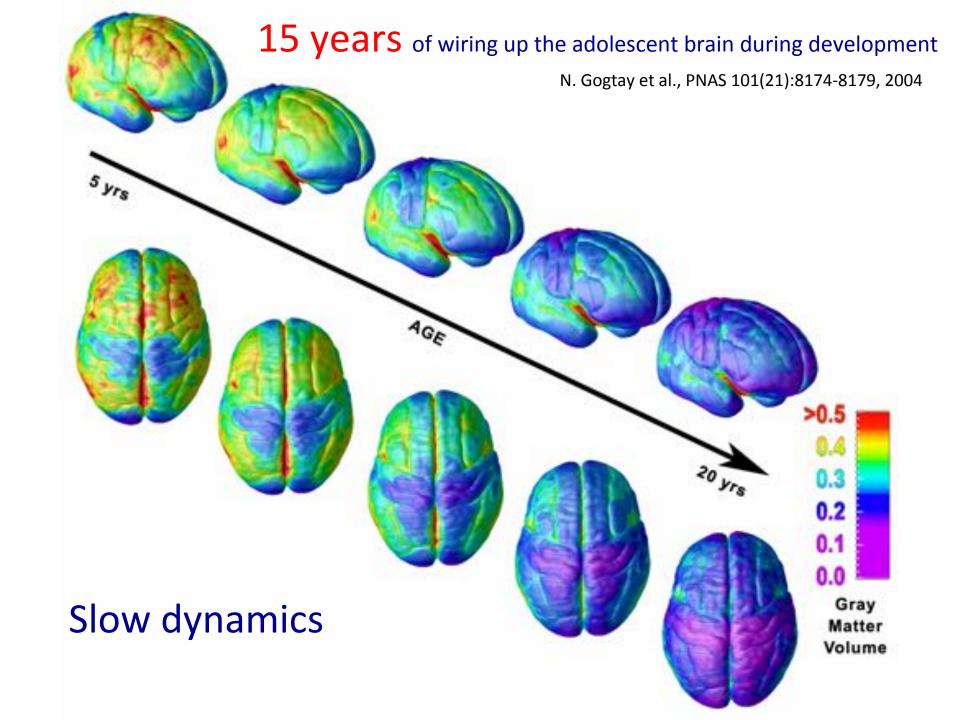
K-Computer, RIKEN Lab, 12.6 MW Processor-to-Neural Cell Ratio 1 : 20.000

Simulation speed 1.520: 1 compared to biological real-time



number of compute nodes

Diesmann, Proceedings of the 4th Biosupercomputing Symposium, Tokyo, 2012



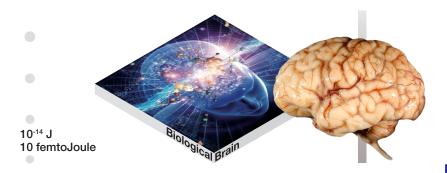
TimeScales	Nature + Real-time	Simulation
Causality Detection	10 ⁻⁴ s	0.1 s
Synaptic Plasticity	1 s	1000 s
Learning	Day	1000 Days
Development	Year	1000 Years
12 Orders of Magnitude		
Evolution	> Millenia	> 1000 Millenia
> 15 Orders of Magnitude		

Blue Brain Project 10° J 1 Joule Complex Brain Mode 10-4 J 0.1 milliJoule Simplified Brain Model Simplified Brain Model

EnergyScales

Computational Primitive : Energy used for a synaptic transmission

10 - 14 orders of magnitude difference for *"the same thing"*



From: HBP project report

How much does a Neural Computation cost?

FROM TOP TO BOTTOM (Human Brain)

20 W total Power equally shared

100 Billion neurons firing at 1 Hz 10⁻¹⁰ Joule per action potential

10¹⁵ Synapses transmitting at 1 Hz 10⁻¹⁴ Joule per synaptic transmission

FROM BOTTOM TO TOP

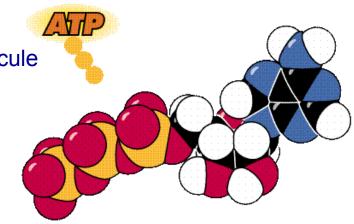
Approx. 10⁹ ATP molecules to be hydrolyzed for action potential

Approx. 10⁵ ATP molecules to be hydrolyzed for synaptic transmission

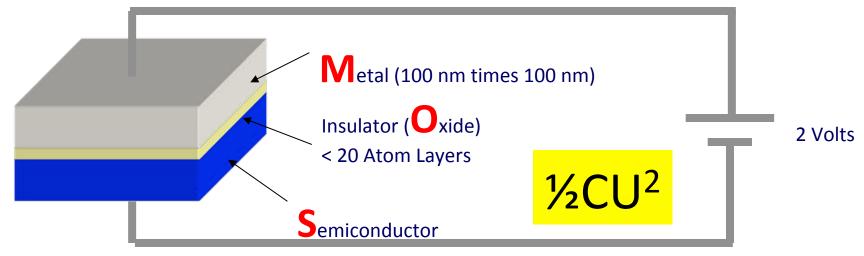
D. Attwell and S. B. Laughlin

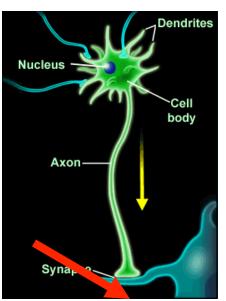
Obtain 10⁻¹⁹ Joule (approx. 1 eV) per ATP molecule Bray, Dennis. Cell Movements. New York: Garland, 1992

10⁻¹⁰ Joule (100.000 fJ = 0.1 nJ) per action potential 10^{-14} Joule (10 fJ) per synaptic transmission



Electronics vs. Biology on the device level - Not a big difference!





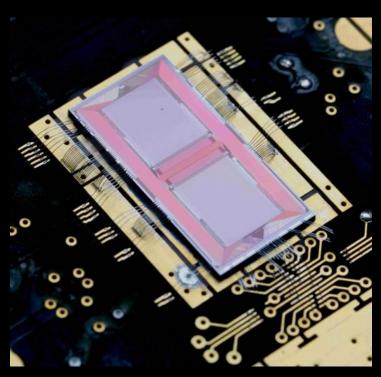
"Switching" of a MOS transistor: approximately 0.5 fJ

Synaptic Transmission:

approximately 10 fJ

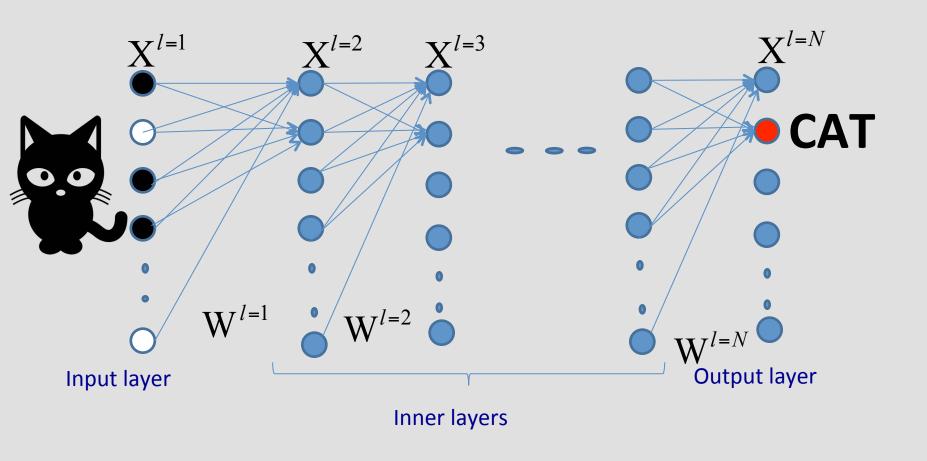
20 CMOS Transistors

The Brain in a Computer ?



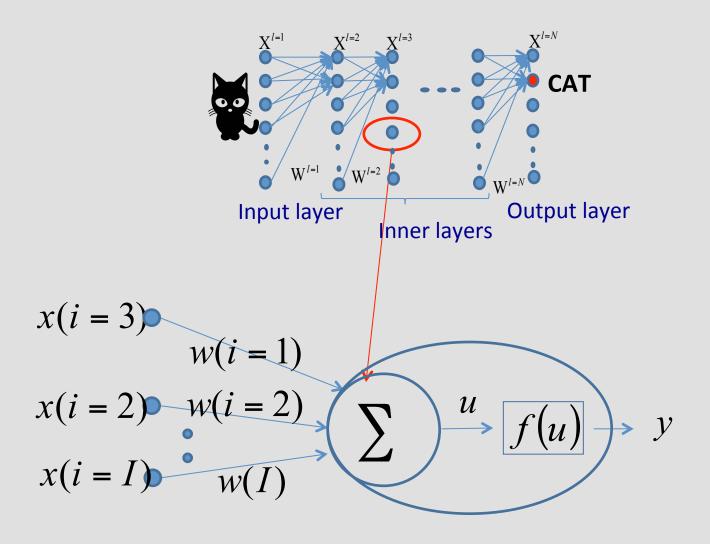
Computers like Brains?

Artificial Neuronal Networks ignore time evolution

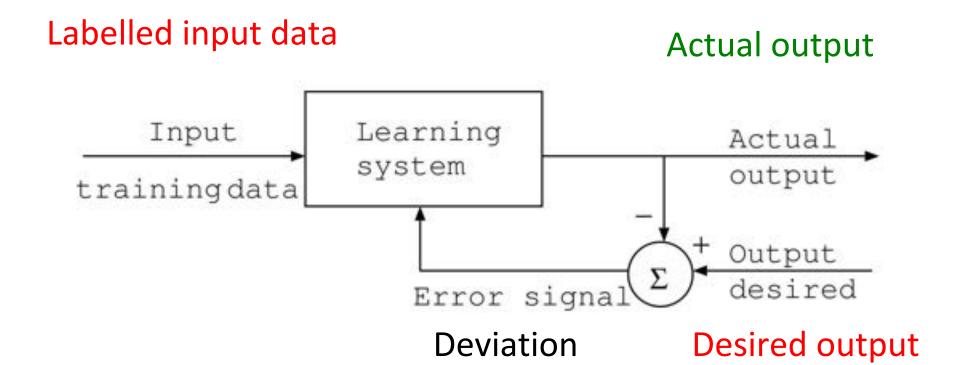


Here: local, no recurrency feed-forward

Pairs of neurons connected by weights Neuron performs integration (summing)



Learning Example: Supervised



Jumpstart

Strategic Network

Supervised Learning

Predict human moves database of existing matches 160.000 matches, 30 Million positions

Policy Network

Reinforcement Learning

Network self-matches 128.000.000 matches

Value Network

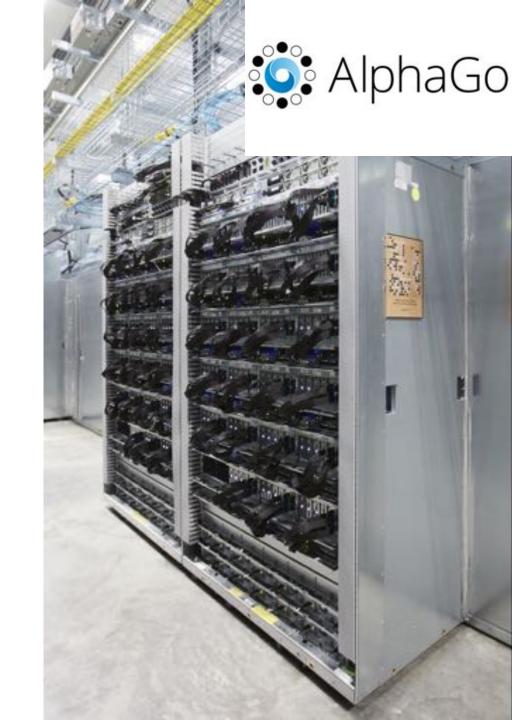
Combination of first 2 steps 30 Million self-matches

One year learning time, 0.5 MW

Energy: 183 MWh

Excessive training samples

Learning is slow and expensive Application is fast



What is time (spiking ...) good for ?

Presynaptic Neuron

Postsynaptic Neuron

- Sparse information coding by time correlations
- Short term spike based synaptic plasticity (STP)
- Spike-timing-dependent plasticity (STDP)
- Temporal noise (stochasticity) based computing

Postsynaptic Recording

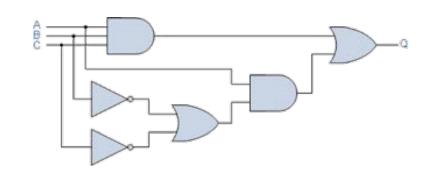
- Energy efficiency
- Computational advantages

Presynaptic Recording

Brain-inspired or brain-derived or neuromorphic computing

Digital

- Discrete values of physical variables
- Computation by Boolean algebra
- One wire one bit of information
- Signal restored after gate

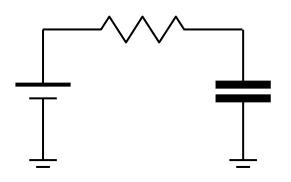


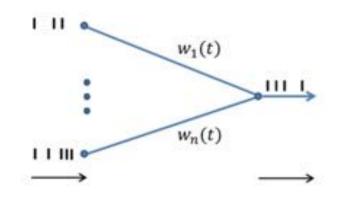
Analog

- Continuous values of physical variables
- Computation by component physics
- One wire many bits of information
- Signal not restored after stage

Nature / mixed-signal

- Local analogue computation
- Binary communication by spikes
- Signal restoration





Large-scale Neuromorphic Computing – compare

Commodity microprocessors

Custom fully digital

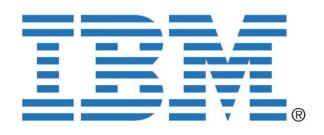
Custom Mixed-Signal

SpiNNaker, HBP TrueNorth, IBM BrainScaleS, HBP Soft-binary-code Hard-binary-code Physical model

Anything in common?

- + Massively parallel (close to perfect weak scaling)
- + Asynchronous communication
- + Configurability
- Limited flexibility and complexity in neural models

COMPLEMENTARITY OF APPROACHES ESSENTIAL!



HBP Neuromorphic Computing Concepts

MANY-CORE NUMERICAL MODEL SYSTEM

0.5 – 1 Million ARM processors – address-based, small packet, asynchronous communication – real-time simulation

Location: Manchester (UK)

PHYSICAL MODEL SYSTEM

Local analog computing with 4 Million neurons and 1 Billion synapses – binary, asynchronous communication – x 10 000 accelerated emulation

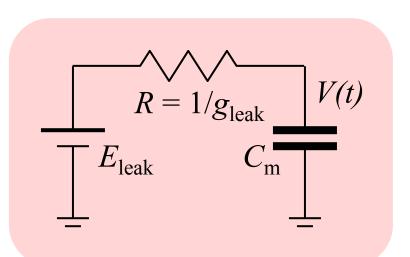
Location: Heidelberg (Germany)

Physical Model System

Continuous Time Integrating Neural Cell Membrane (+ non-linearity)

$$C_{\rm m} \, \frac{dV}{dt} = -g_{\rm leak} \, \left(V - E_{\rm leak} \right)$$

$$\frac{g_{\rm leak} \, [{\rm S}]}{{\rm Biology(*)}} \, \frac{C_{\rm m} \, [{\rm F}]}{10^{-8}}$$
VLSI 10^{-6} 10^{-13}



(*) Brette/Gerstner, J. Neurophysiology, 2005

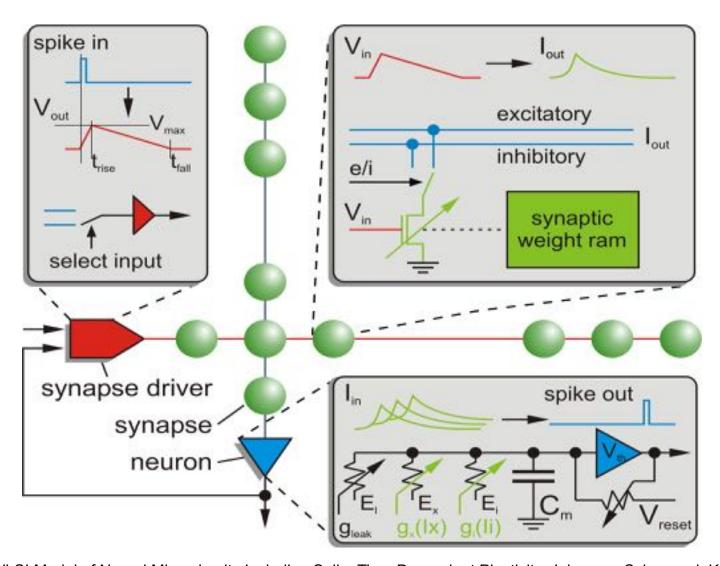
$$c_{\rm m} \frac{dV}{dt} = -g_{\rm leak} (V - E_1) + \sum_{k} p_k g_k (V - E_{\rm x}) + \sum_{l} p_l g_l (V - E_{\rm i})$$

 $p_{k,l}(t)$ exponential onset and decay (post-synaptic potential shape) $g_{k,l}$ 0 to g_{\max} ("weights")

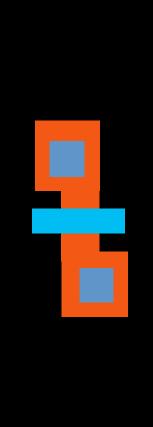
effective membrane time-constant $c_{\rm m}/g_{\rm total}$ is time-dependent

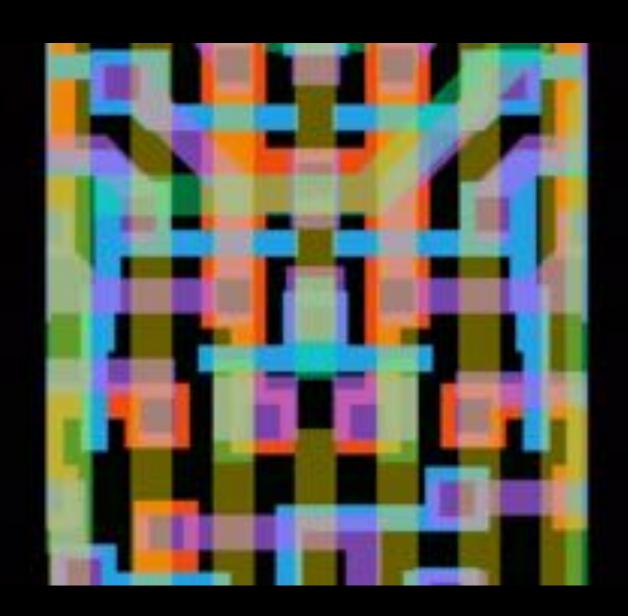
"Time" is imposed by internal physics, not by external control

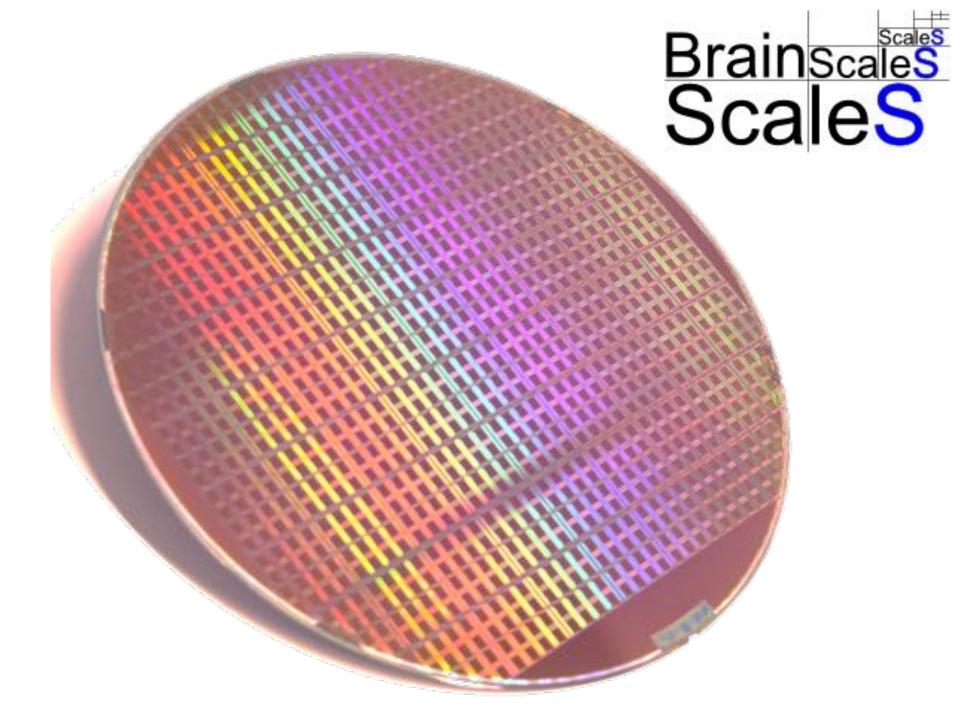
Implementation example with synaptic inputs and neuron non-linearity mixed-signal: analog cores, binary communication



A New VLSI Model of Neural Microcircuits Including Spike Time Dependent Plasticity, Johannes Schemmel, Karlheinz Meier, Eilif Muller, Proceedings of the 2004 International Joint Conference on Neural Networks (IJCNN'04), IEEE Press, pp. 1711-1716, 2004



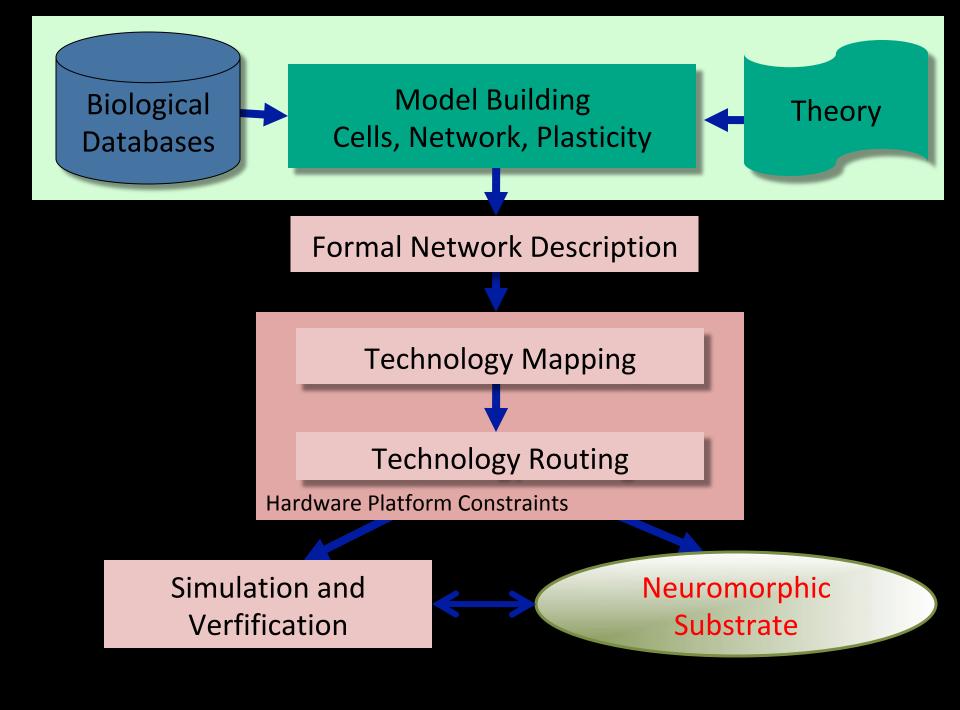




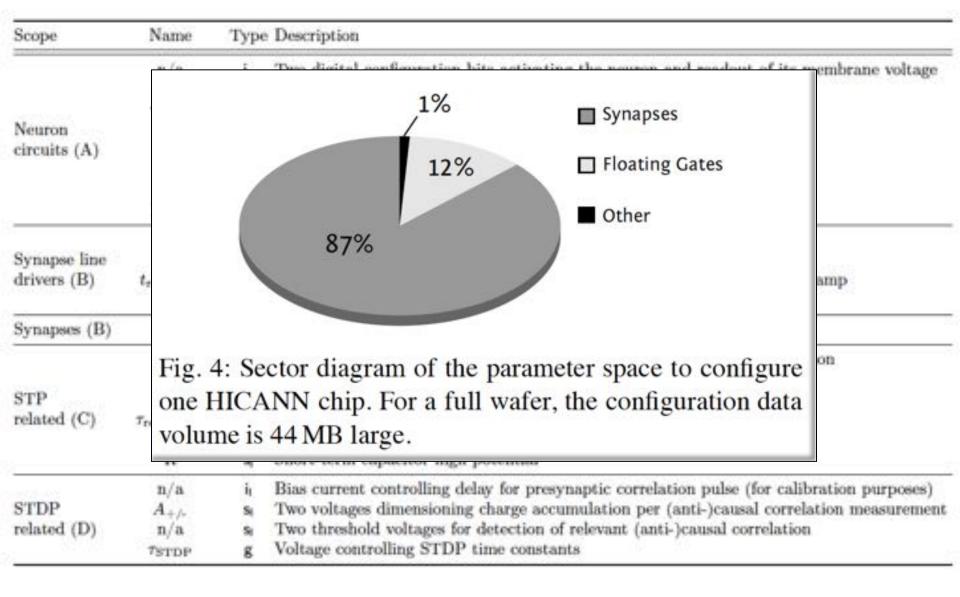
Physical Model, local analogue computing, binary continuous time communication

Wafer-Scale Integration of 200.000 neurons and 50.000.000 synapses on a single 20 cm wafer

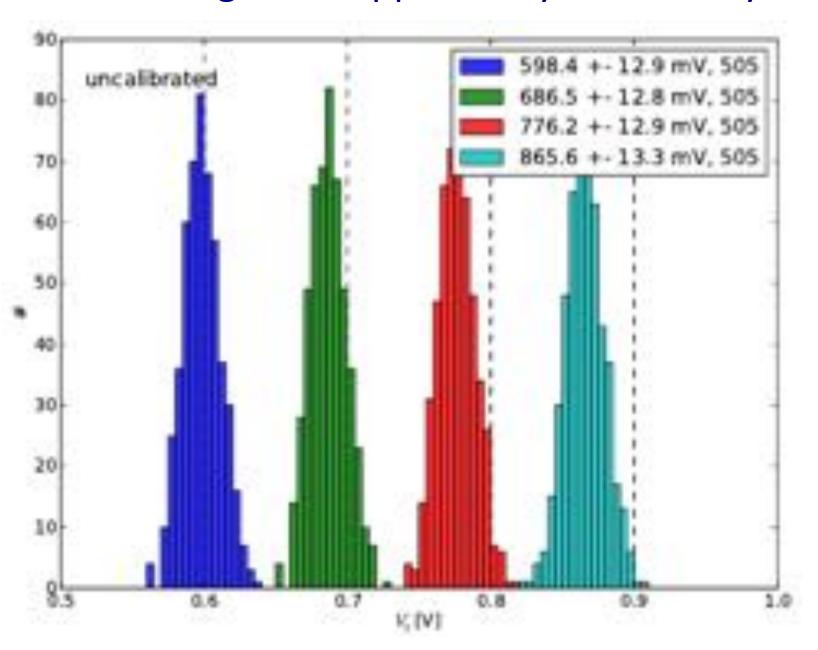
Short term and long term plasticity, 10.000 faster than real-time



Configuration Space 40 MB for a full Wafer



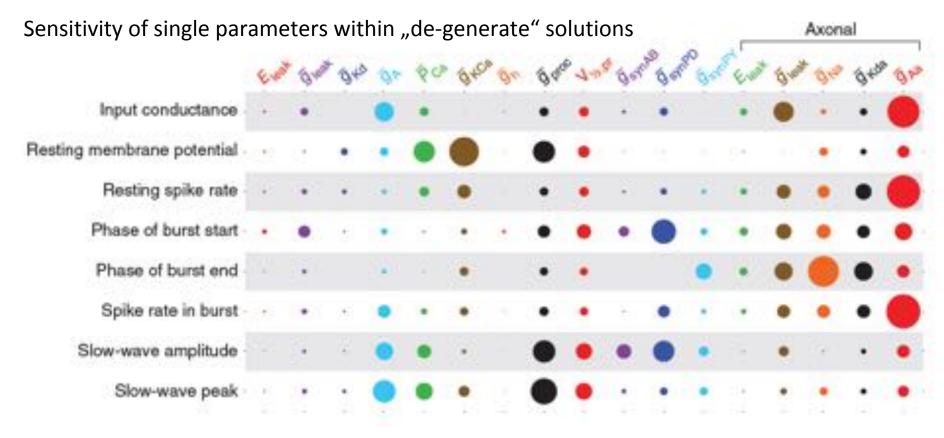
Challenge and Opportunity: Variability

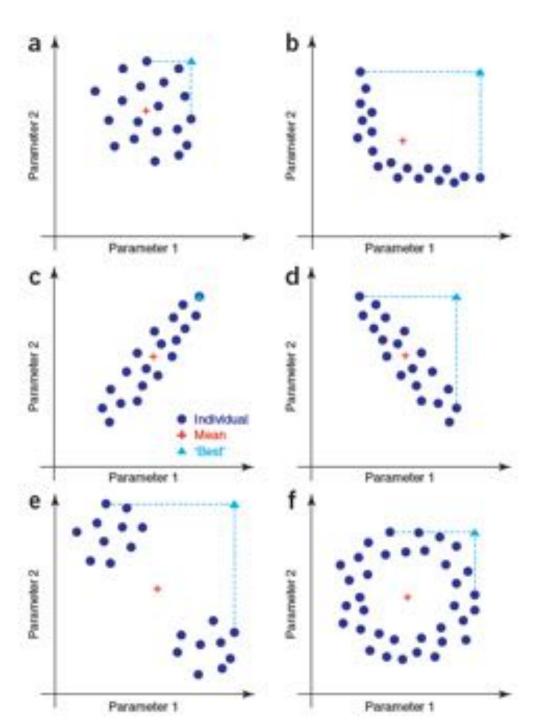


Pyloric rhythm of the crustacean stomatogastric ganglion

20.000.000 model networks created with 17 random cell parameters, fixed connectivity (Neuron)

400.000 networks found with "identical (de-generate)" timing behaviour in measured biological range

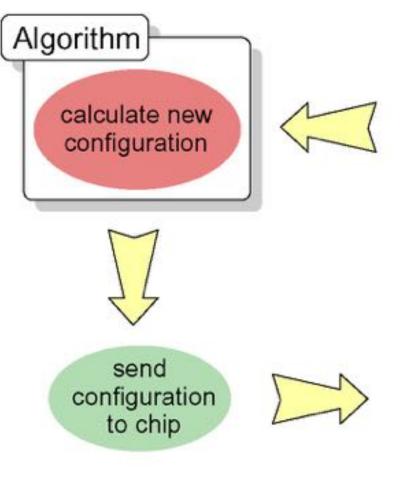




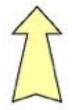
Variability has to be at the right place ...

Marder, Taylor Nature Neuroscience 14, Nr 2, 2011

Hardware-In-the-Loop



read back results



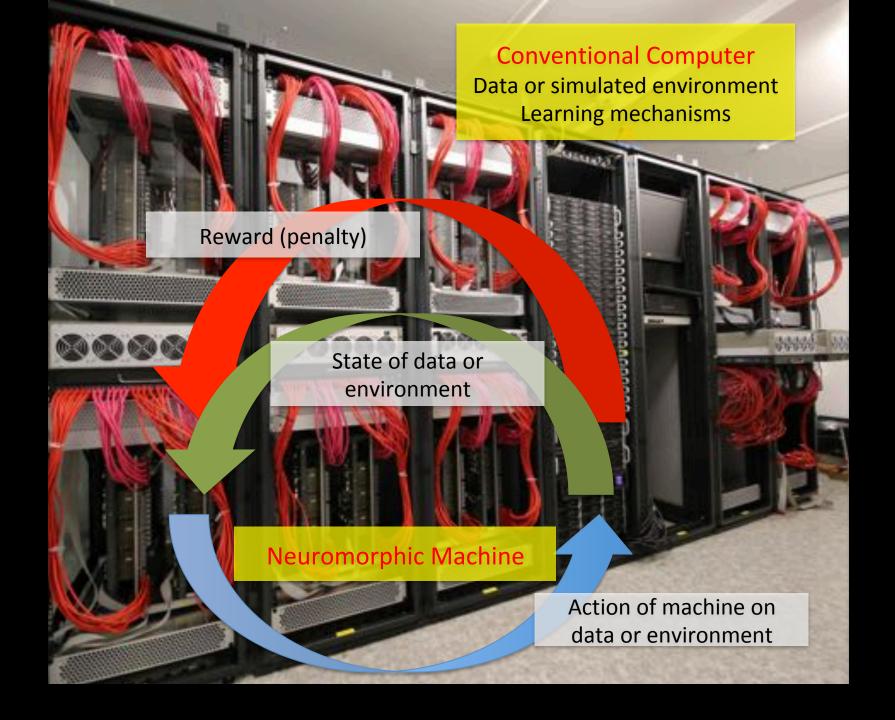
What for?

- Calibration
- Learning
- Environment
- Data

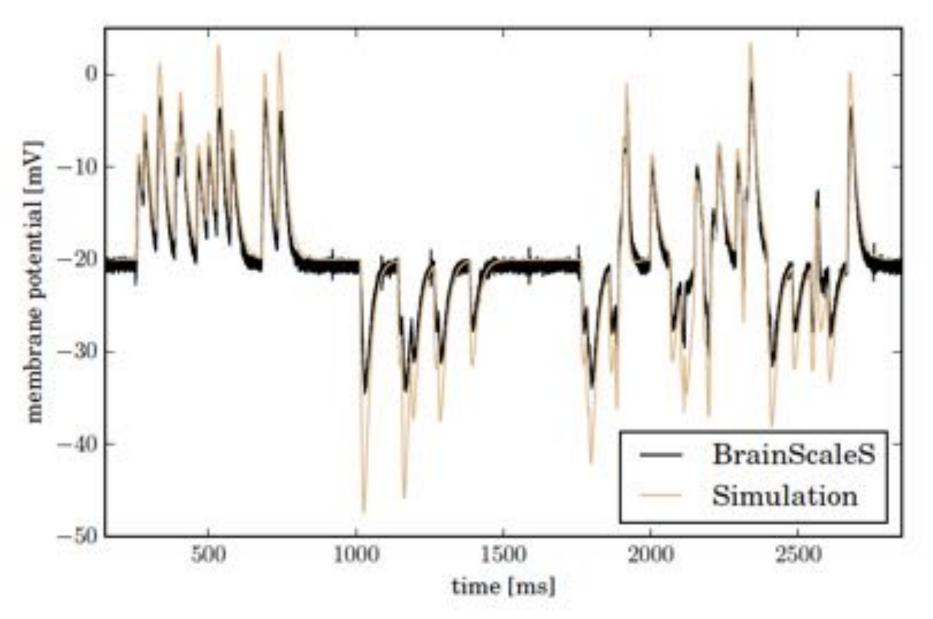
Separated?

test configuration on chip

- network topology
- neuron sizes and parameters
- synaptic strengths

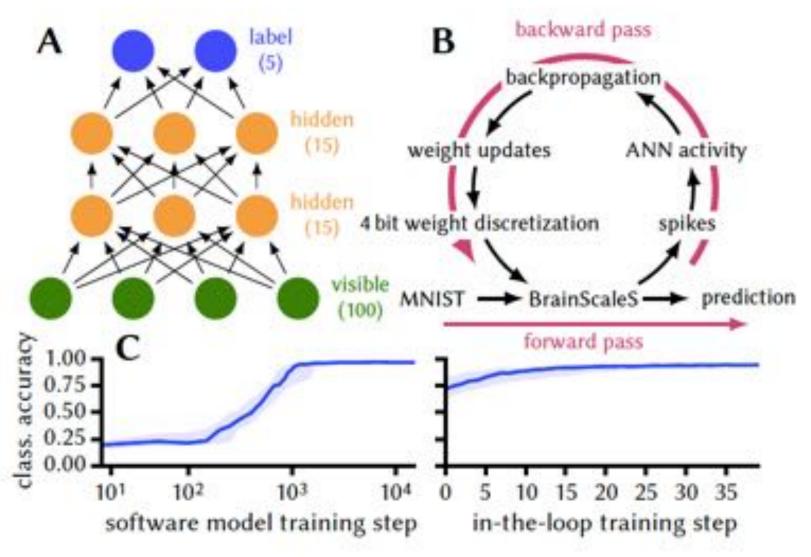


Physical model emulation

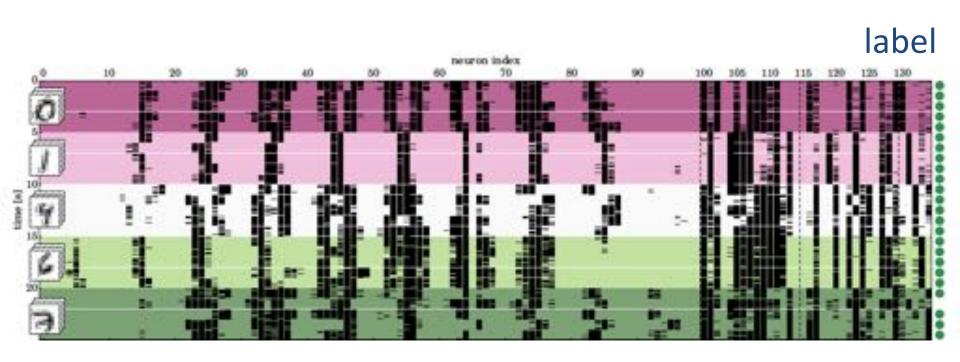


Sebastian Schmitt et al., accepted IJCNN 2017

Feed-forward, rate-based. 4-layer spiking network MNIST classification on a physical model machine performance before and after hardware in-the-loop learning



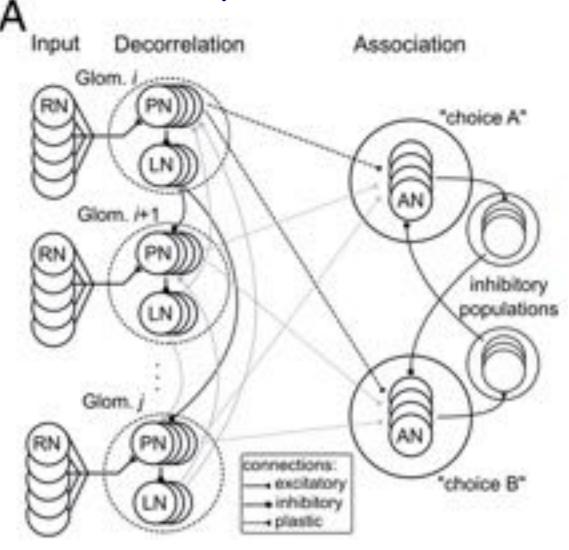
MNIST classification on a physical model machine Neuronal firing activity after hardware in-the-loop learning



input

2 x hidden

Example for insect brain derived circuit



3 Layer Spiking Neuron Network derived from Insect Olfactory System

L : Receptor Neurons

L | | : Decorrelation through lateral inhibition (Glomeruli)

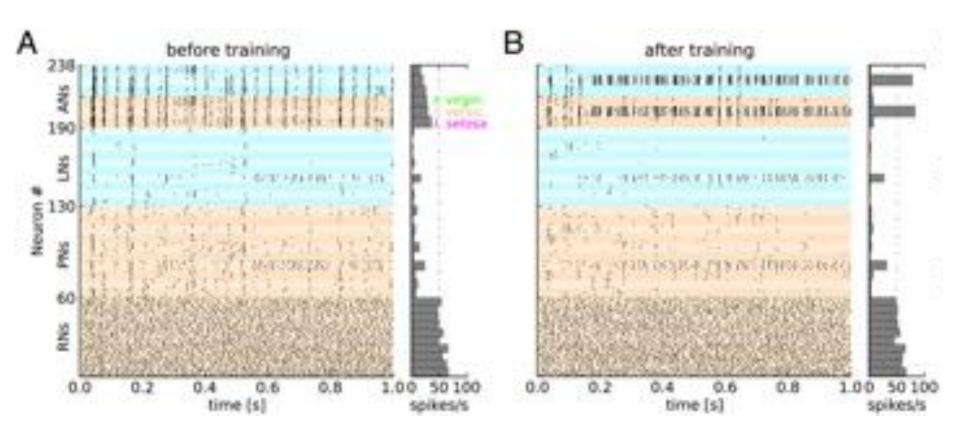
L III: Association (Soft WTA through strong inhibitory populatuions)

Supervised Learning

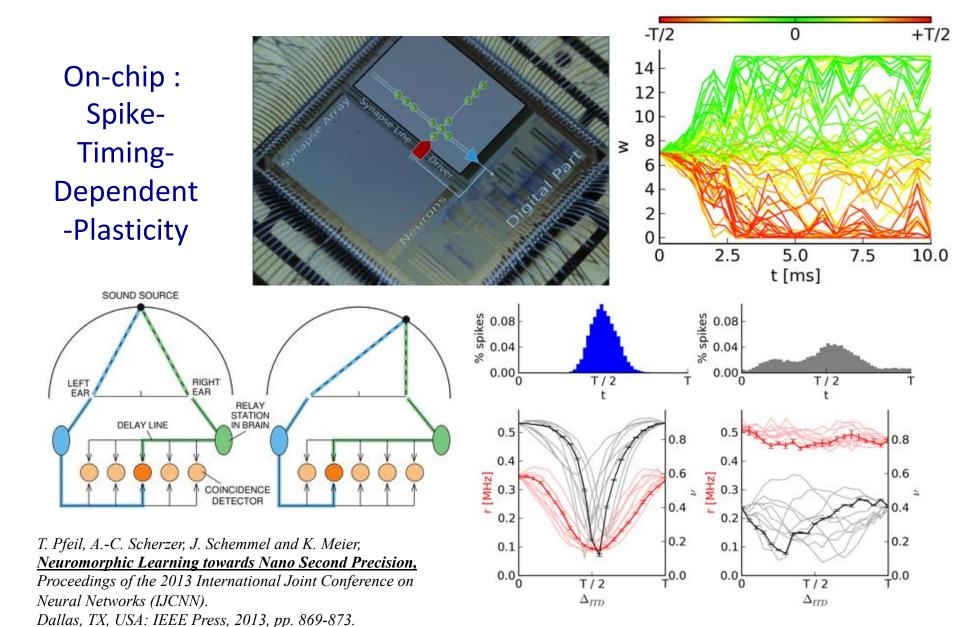
Synaptic Projections from Layer 2 to Layer 3

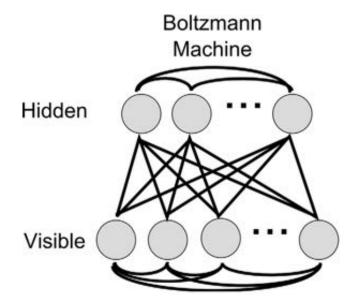
Schmuker, M. et al., "A neuromorphic network for generic multivariate data classification." *Proceedings of the National Academy of Sciences* (2014): 201303053.

Neuronal firing activity before and after learning Application in generic multivariate data classification

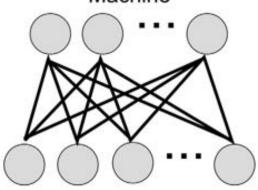


Schmuker, M.et al., "A neuromorphic network for generic multivariate data classification." *Proceedings of the National Academy of Sciences* (2014): 201303053.





Restricted Boltzmann Machine



Boltzmann Machines

Networks of symmetrically connected stochastic nodes k

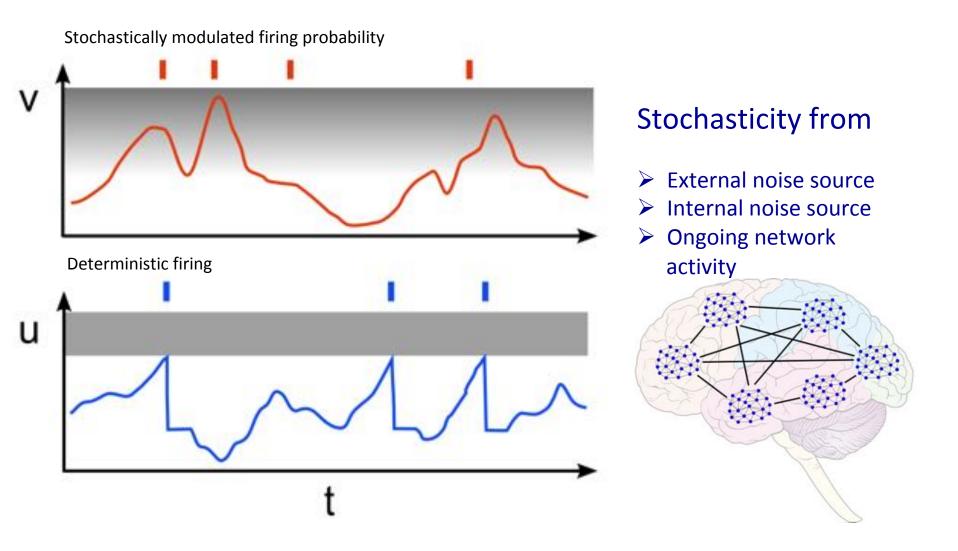
State of nodes described by vector of binary random variables z_k (0,1)

Probability for state-vector converges to a target Boltzmann-distribution

$$p(\vec{z}) = \frac{1}{Z} \exp\left[-E(\vec{z})\right]$$

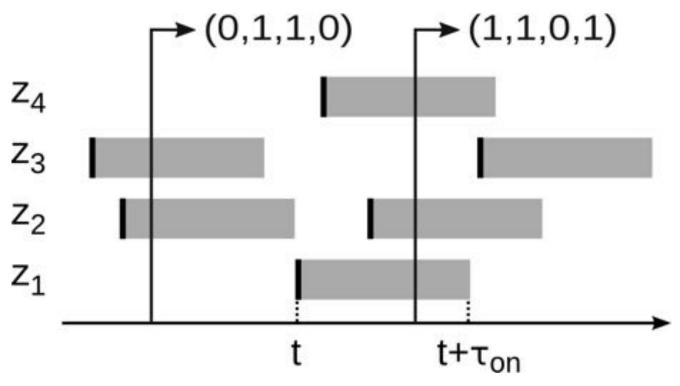
Energy function

$$E(\vec{z}) = -\frac{1}{2} \sum_{i \neq j} w_{ij} z_i z_j - \sum_i b_i z_i$$



M. A. Petrovici, J. Bill, I. Bytschok, J. Schemmel, and K. M.: Stochastic inference with spiking neurons in the high-conductance state. Physical Review E 94, 2016

Spiking LIF Neurons as a 2-state (binary) system



Neural computability condition

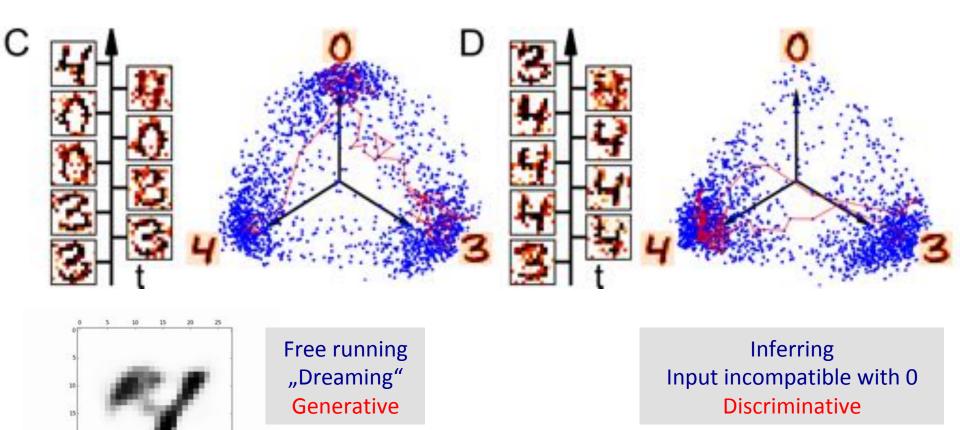
A network of spiking neurons draws samples from the joint distribution p if the membrane potentials u_k of the neurons follows

$$u_k = \log \frac{p(z_k = 1 \,|\, \mathbf{z}_{\setminus k})}{p(z_k = 0 \,|\, \mathbf{z}_{\setminus k})}$$

Corresponds to a logistic activation function of the neuron

Learning specific input distributions by adjusting LOCAL interactions

- Clamp visible units to value of particular pattern reach thermal equilibrium
- Incremement interaction between any 2 nodes that are both on
- Run network freely and sample from stored probability distribution
- Infer from clamped input



PhD, Mihai Petrovici, BA Luziwei Leng 2015

Energy Scales 10º J 1 Joule 0.1 milliJoule 10-8.1 10 nanoJoule 10⁻¹⁰ J 0.1 nanoJoule 10 femtoJoule

EnergyScales

Energy used for a synaptic transmission

Filling the Gap

Z

- Typically 10.000.000 times more energy efficient than state-of-the art HPC (comparable model)
- 10.000 less efficient than biology

From: HBP project report

TimeScales	Nature + Real-time	Simulation	Accelerated Model
Causality Detection	10 ⁻⁴ s	0.1 s	10 ⁻⁸ s
Synaptic Plasticity	1 s	1000 s	10 ⁻⁴ s
Learning	Day	1000 Days	10 s
Development	Year	1000 Years	3000 s
12 Orders of Magnitude			
Evolution	> Millenia	> 1000 Millenia	> Months
> 15 Orders of Magnitude			

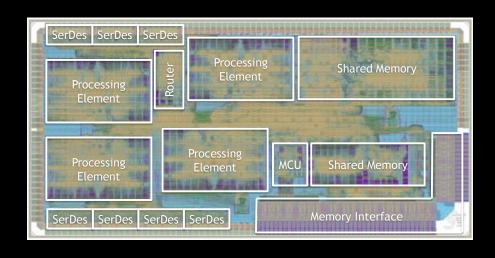
Next generation of NM computing in the HBP

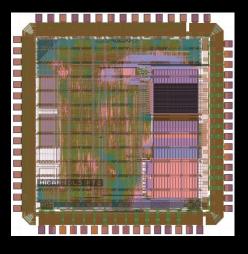
SpiNNaker-2

4-core Quad Processing Element 25 GIPS/W on a single die Floating point precision True random numbers

BrainScales-2

Flexible local learning
On-the-fly network reconfiguration
Structured neurons
Dendritic computation





Today: Working prototypes

2020: Operational systems

Goal: learning cognitive machines

Final Thoughts

- After 10 years of development the BrainScaleS large scale physical hardware system is being commissioned and delivers first results
- ➤ Fully non-Turing, physical model computing can solve established machine learning tasks
- ➤ 2nd generation physical model systems start to offer very advanced accelerated local learning capabilities and exploitation of dendritic computation

Goal: Build a continuously learning cognitive machine