GSI Colloquium

Bastian Löher

October 2017

What does it take to find a dirty bomb?

Bastian Löher GSI Kolloquium October 2017

Find

dirty bomb

Google-Suche

Auf gut Glück!

Achte bei deiner Suchanfrage auf die korrekte Schreibweise. Versuche, eine Stadt, ein Bundesland oder eine PLZ hinzuzufügen.

Im Web suchen

Sollte dieser Ort in Google Maps verzeichnet sein? Fehlenden Ort hinzufügen

Finding means discovering

Bomb

An explosive device used or intended as a weapon
– Wikipedia

Damage types

Shock

Damage types

- Shock
- Heat

Damage types

- Shock
- Heat
- Fragmentation

Finding a bomb

With Contact

- Colorimetric tests
- Ion Mobility spectrometry

Very accurate

Close range

- Dogs with special training
- X-ray inspection
- Neutron activation

Accurate, but usually expensive

Remote sensing

???

Very difficult

Dirty

Make it radioactive!

Five grams of cesium - mixed with a few kg of explosives

- are enough to cause damage in the range of billions
- W. Koch, FKIE

Dirty bomb – An Explosive Radiological Dispersal Device (ERDD)

Not a nuclear device

Make it radioactive!

Five grams of cesium - mixed with a few kg of explosives

- are enough to cause damage in the range of billions
- W. Koch, FKIE

Dirty bomb - An Explosive Radiological Dispersal Device (ERDD)

- Not a nuclear device
- energy release from common chemicals

Why?

• Same immediate damage

- Same immediate damage
- Long-term health damage

- Same immediate damage
- Long-term health damage
- Area Contamination

- Same immediate damage
- Long-term health damage
- Area Contamination
- Psychological effects

Wikipedia (public domain)

Dirty bombs

- Dirty bombs
- Illegal transportation

- Dirty bombs
- Illegal transportation
- Area monitoring

- Dirty bombs
- Illegal transportation
- Area monitoring
- Area inspection

Dirty bombs

commons.wikimedia.org

Illegal transport

commons.wikimedia.org

Area monitoring

commons.wikimedia.org

Area inspection

commons.wikimedia.org

Building a detector

highly sensitive

- highly sensitive
- fast

- highly sensitive
- fast
- mobile

- highly sensitive
- fast
- mobile
- easy to use

- highly sensitive
- fast
- mobile
- easy to use
- rugged

- highly sensitive
- fast
- mobile
- easy to use
- rugged
- (cheap)

handheld

- handheld
- vehicle based

- handheld
- vehicle based
- stationary

- handheld
- vehicle based
- stationary
- one-off prototypes

Handheld devices

Ecotest SPECTRA

Rapiscan PRM470

FLIR Identifinder

dtect rad-ID

GammaScout

Capabilities (handheld)

Property	SPECTRA	identiFINDER	Scout	Rapiscan	rad-ID
Gamma	yes	yes	yes	yes	yes
Neutron	yes	yes	no	yes	yes
Dose	yes	yes	yes	yes	yes
Histogramming	yes	yes	no	no	yes
Identification	yes	yes	no	no	yes
GPS	yes	yes	no	no	no
Material	Csl / Lil	Nal / GM / 3He	GM	plastic / 3He	CZT / Nal / 3He / GN

Car-based solutions

Capabilities (car based)

Properties	Canberra	Ortec	Thermo Fisher
Gamma	yes	yes	yes
Beta	yes	no	no
Neutron	no	yes	yes
GPS	yes	yes	yes
Dose	yes	yes	yes
Identification	no	no	yes
Histogramming	no	yes	?
Mapping	yes	yes	yes
Material	plastic / GM	Nal / 3He	Nal / plastic / 3H
Extra	Weather	Compact	Modular

What's missing?

Directional sensing

search engine land.com

Grid search vs. Compass

Faster

Greater distance

Less exposure

ViDeO

Validation of an innovative handheld concept detector for gamma source location

Specifications

- Gamma detection
- Dose / Intensity
- Histogramming / ID
- Mapping
- Directional sensing

Design decisions

- Geometry
- Material
- Electronics

Geometry

Asymmetry

Material

• Fast: High detection efficiency

- Fast: High detection efficiency
- Histogramming: Good energy resolution

- Fast: High detection efficiency
- Histogramming: Good energy resolution
- Easy to use: Reliable and stable

- Fast: High detection efficiency
- Histogramming: Good energy resolution
- Easy to use: Reliable and stable
- Scintillator (CeBr)

Photo-multiplier tubes

- Photo-multiplier tubes
- Off-the-shelf desktop digitizers with HV

- Photo-multiplier tubes
- Off-the-shelf desktop digitizers with HV
- High quality GPS receiver

- Photo-multiplier tubes
- Off-the-shelf desktop digitizers with HV
- High quality GPS receiver
- Car battery as power source

ViDeO 1 prototype

Software

Field Test 2

• 300 MBq gamma source at 12 m minimum distance

Field Test 2

- 300 MBq gamma source at 12 m minimum distance
- driving speed 30 km/h

Field Test 2

- 300 MBq gamma source at 12 m minimum distance
- driving speed 30 km/h
- 5 seconds of exposure

ViDeO results

• Basic concept validated

ViDeO results

- Basic concept validated
- More development needed

ViDeO 2

• Refine concept into a finished product

ViDeO 2

- Refine concept into a finished product
- Investigate new concept for a car-based detector

Main objectives

• Reduce system size

Main objectives

- Reduce system size
- Reduce system cost

Main objectives

- Reduce system size
- Reduce system cost
- Improve usability

• Tighter crystal geometry

- Tighter crystal geometry
- SiPM instead of PMT

- Tighter crystal geometry
- SiPM instead of PMT
- ASIC based electronics

- Tighter crystal geometry
- SiPM instead of PMT
- ASIC based electronics
- Integrated CPU + wireless

New design study

• Dimensions: 20x20x16 ccm

• Weight: 2 kg

Main control via external device

Silicon Photomultipliers

- Much smaller than PMT assembly
- Low voltage and low power
- Similar energy resolution

New readout electronics

- Up to 32 ch ASIC based readout (CITIROC)
- Integrated bias voltage for SiPM
- Raspberry Pi as readout controller
- 8h power supply via standard power bank

- LaBr3 background spectrum
- Four 16 pixel SiPM arrays (SensL B)
- 4.7% energy resolution without gain matching

A scalable and reliable DAQ

- Linux based
- Each component (readout / analysis / output ...) is independent
- Coupling via message passing interface (zeroMQ) -> data driven
- Monitoring / control using Linux systemd

Detector simulator

- Example of modularity same data as from real detector
- Allows quick testing of algorithms

Current Status

• New electronics are working

Current Status

- New electronics are working
- Waiting for new crystals

Current Status

- New electronics are working
- Waiting for new crystals
- Software is in progress

• one of 3 arms complete

- one of 3 arms complete
- higher angular resolution

- one of 3 arms complete
- higher angular resolution
- higher sensitivity

- one of 3 arms complete
- higher angular resolution
- higher sensitivity
- longer range

Why develop this technology at GSI?

Detector construction

- Detector construction
 - Scintillators & HPGe

- Detector construction
 - Scintillators & HPGe
- High resolution spectroscopy

- Detector construction
 - Scintillators & HPGe
- High resolution spectroscopy
- 3D position reconstruction

- Detector construction
 - Scintillators & HPGe
- High resolution spectroscopy
- 3D position reconstruction
 - AGATA

- Detector construction
 - Scintillators & HPGe
- High resolution spectroscopy
- 3D position reconstruction
 - AGATA
 - SiPM / Multi-anode PMTs

- Detector construction
 - Scintillators & HPGe
- High resolution spectroscopy
- 3D position reconstruction
 - AGATA
 - SiPM / Multi-anode PMTs
- Fast timing with FPGA TDCs

- Detector construction
 - Scintillators & HPGe
- High resolution spectroscopy
- 3D position reconstruction
 - AGATA
 - SiPM / Multi-anode PMTs
- Fast timing with FPGA TDCs
- High count rate spectroscopy

- Detector construction
 - Scintillators & HPGe
- High resolution spectroscopy
- 3D position reconstruction
 - AGATA
 - SiPM / Multi-anode PMTs
- Fast timing with FPGA TDCs
- High count rate spectroscopy
 - Pile-up correction

- Detector construction
 - Scintillators & HPGe
- High resolution spectroscopy
- 3D position reconstruction
 - AGATA
 - SiPM / Multi-anode PMTs
- Fast timing with FPGA TDCs
- High count rate spectroscopy
 - Pile-up correction
- Particle ID (neutron / gamma)

- Detector construction
 - Scintillators & HPGe
- High resolution spectroscopy
- 3D position reconstruction
 - AGATA
 - SiPM / Multi-anode PMTs
- Fast timing with FPGA TDCs
- High count rate spectroscopy
 - Pile-up correction
- Particle ID (neutron / gamma)
- Monte-Carlo simulation

- Detector construction
 - Scintillators & HPGe
- High resolution spectroscopy
- 3D position reconstruction
 - AGATA
 - SiPM / Multi-anode PMTs
- Fast timing with FPGA TDCs
- High count rate spectroscopy
 - Pile-up correction
- Particle ID (neutron / gamma)
- Monte-Carlo simulation
- Data acquisition / analysis

- Detector construction
 - Scintillators & HPGe
- High resolution spectroscopy
- 3D position reconstruction
 - AGATA
 - SiPM / Multi-anode PMTs
- Fast timing with FPGA TDCs
- High count rate spectroscopy
 - Pile-up correction
- Particle ID (neutron / gamma)
- Monte-Carlo simulation
- Data acquisition / analysis
- Electronics department

- Detector construction
 - Scintillators & HPGe
- High resolution spectroscopy
- 3D position reconstruction
 - AGATA
 - SiPM / Multi-anode PMTs
- Fast timing with FPGA TDCs
- High count rate spectroscopy
 - Pile-up correction
- Particle ID (neutron / gamma)
- Monte-Carlo simulation
- Data acquisition / analysis
- Electronics department
- Complex detector systems

- Detector construction
 - Scintillators & HPGe
- High resolution spectroscopy
- 3D position reconstruction
 - AGATA
 - SiPM / Multi-anode PMTs
- Fast timing with FPGA TDCs
- High count rate spectroscopy
 - Pile-up correction
- Particle ID (neutron / gamma)
- Monte-Carlo simulation
- Data acquisition / analysis
- Electronics department
- Complex detector systems
 - DESPEC / R3B / CBM

Sneak peak

Multiple source detection

• So far only a single radiation source

Multiple source detection

- So far only a single radiation source
- More complex

Multiple source detection

- So far only a single radiation source
- More complex
- Several concepts are being investigated

Highly modular detection platform

• Scalable to demand

- Scalable to demand
- Neutron & gamma detection

- Scalable to demand
- Neutron & gamma detection
- Directional sensing

- Scalable to demand
- Neutron & gamma detection
- Directional sensing
- Imaging

- Scalable to demand
- Neutron & gamma detection
- Directional sensing
- Imaging
- Sensor fusion

Closing remarks

Summary

- Finding a dirty bomb means finding radiation
- Overview of available radiation finders
- We are adding direction sensing
- ViDeO 1 project successfully validated the concept
- ViDeO 2 aims at a finished product
- New concepts are evaluated for future systems

Gefördert durch:

GEFÖRDERT VOM

aufgrund eines Beschlusses des Deutschen Bundestages

Backup

Asymmetry

Pile-up correction

- LaBr3 detector and strong 60Co source
- Pile-up alters measured energies
- Subtraction of contribution from neighboring signals
- Ensures correct operation in strong radiation fields

Position reconstruction

- Simulation of monolithic LaBr3 and SiPM pixels
- Reconstruction of z coordinate from light spread
- Allows to construct position sensitive detectors from large crystals

Unsupervised particle ID

- Csl scintillator, mixed proton and gamma events
- Standard charge comparison -> detector dependent values
- Fuzzy clustering algorithm -> detector independent values
- Also investigated for neutron / gamma discrimination
- Allows efficient calibration of neutron detectors

• High detection efficiency

- High detection efficiency
- Position sensitive readout

- High detection efficiency
- Position sensitive readout
- 3D position information

- High detection efficiency
- Position sensitive readout
- 3D position information
- Multiple source detection

• Commonly used for gamma-ray telescopes

- Commonly used for gamma-ray telescopes
- Applicable for photons and neutrons

- Commonly used for gamma-ray telescopes
- Applicable for photons and neutrons

- Commonly used for gamma-ray telescopes
- Applicable for photons and neutrons

Compton Camera

• Low efficiency due to coincidence condition

Compton Camera

- Low efficiency due to coincidence condition
- High spatial resolution