

Analysis

Results from first matcheo submodules

Summary

Results from the first matched forward endcap submodules

<u>M. Rossbach</u>, M. Kube, C. Schmidt, U. Thoma

Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn

Supported by:

Bundesministerium für Bildung und Forschung

PANDA Meeting 2017-09-05

Analysis

Results from first matched submodules

Summary

Trigger Detectors top Crystals Trigger Detectors bottom

Motivation

- Each detector submodule needs to be tested and can be relatively calibrated
- Measurement with cosmics

Analysis

Results from first matched submodules

Summary

Analysis

Goal of the analysis

- Compare measured and simulated data to obtain pre-calibration for each of the crystal channels
- Find a conversion from ADC bin to energy [MeV]

Analysis

Results from first matched submodules

Summary

Measure for quality

Minimum found at 0.207 MeV

Analysis

Results from first matched submodules

Summary

Exemplary result for realistic statistics

Minimum found at 0.207 MeV

Analysis

Results from first matched submodules

Summary

Reminder: matching procedure

Positioning of crystal according to expected radiation profile

Matching VPTTs to positions, response formulated as: gain(950V) · skb · gainLoss(B) · preamp gain · crystal LY

Minimizing quality variances in compartments by:

grouping VPTTs with same voltage dependence and adjusting optimal voltage for each compartment

Test measurements with 3 matched submodules2-X1Y52-X3Y22-X2Y4

Analysis

Results from first matched submodules

Summary

Longterm measurement split into subsamples

scaling factors of subsets normed by full measurement

variation below $\approx 2.3\%$

Analysis

Results from first matched submodules

Summary

Submodule 2-X1Y5 (run 1041)

 $\mathsf{E}_i:$ measured gain; $\mathsf{Q}_i^{norm}:$ expected gain normalized by mean ratio to measured gain.

8/ 15

Analysis

Results from first matched submodules

Summary

Submodule 2-X1Y5 (run 1041)

normalized by mean ratio: calculated to measured gain.

Analysis

Results from first matched submodules

Summary

Submodule 2-X1Y5 (runs 1041 and 1215)

relative deviation of scaling factor

run 1215: red dot; run 1041: blue dot (same setup) rel. deviations: ch $5 \approx 3.6\%$ ch $11 \approx 3.7\%$

Analysis

Results from first matched submodules

Summary

Submodule 2-X2Y4 (runs 1243 and 1216)

relative deviation of scaling factor

run 1243: red dot ; run 1216: blue dot (different setup) rel. deviations: ch $4\approx7.8\%$ ch $7\approx3.5\%$

Analysis

Results from first matched submodules

Summary

Submodule 2-X3Y2 (run 1244)

Analysis

Results from first matched submodules

Summary

Search for reason of discrepancy: gain(U)

normed gains g(750V)/g(1000V)

Matching VPTTs to positions, response formulated as: dcGain1000V \cdot gainLoss(U) $\cdot skb \cdot$ preamp gain $\cdot cry$. LY

Analysis

Results from first matched submodules

Summary

Summary

Summary

- Teststation design is developed and finished
- Measurement procedure optimised and finalised
- Method for data analysis is principally ready
- Measured gain variations need to be investigated
- 1 setup of the teststation almost ready for vptt submodules
- 2nd setup of teststation will be operational soon.
- First three matched submodules built and measured
- (Partial) re-matching necessary

Analysis

Results from first matched submodules

Summary

Thank you for your attention!

Enter submodule positions, Start Run

measurement run:

- $1. \ turn \ on \ LV$
- 2. ramp up HV
- 3. pulser run, until accepted.
- 4. ramp down temperature with 8 $^{\circ}{\rm C/h}$ to $-25\,^{\circ}{\rm C}$ and wait for 45 min once temperature is reached
- 5. datataking for 3.5 days
- 6. ramp down HV
- 7. turn off LV
- 8. ramp up temperature with 4 $^\circ\text{C}/\text{h}$ to $0\,^\circ\text{C}$ and wait for 20 min
- 9. ramp up temperature with 6 $^\circ\text{C}/\text{h}$ to $25\,^\circ\text{C}$

Example data

2/ 8

3/ 8

Different track types Method

Example data

Example data

4/ 8 **pende**

5/ 8 **Panda**

6/8

Different track types Method

Example data

Method

Method: Log Likelihood

Binned Log Likelihood fit

- $1.\ Vary$ scaling factor of simulated data to measured one
- 2. Get a measure for each of the scaling factors and find the best $L = 2 \sum_{bins} \left(b_{meas} b_{sim} + b_{sim} \cdot \ln \left(\frac{b_{sim}}{b_{meas}} \right) \right)$

For all track types

Track type 4

8 / 8 **Panda**