

STATUS OF PANDA MUON SYSTEM SOFTWARE

G. Golovanov, S. Kutuzov, A. Verkheev, L.S. Vertogradov

PANDA Collaboration Meeting
4-8 September 2017, BINP, Novosibirsk, Russia

GENERAL REMARKS

Panda Muon system TDR:

Software packages like simulation, track reconstruction, online muon selection, calibration and others are under responsibility of the University and INFN Torino with support from JINR/Dubna and GSI/FAIR. Software implementation and physics cases will be jointly developed by JINR, and INFN Torino.

Stefano Spataro's report (November, 2016):

The Muon detector is build by Dubna and the first software version was developed in Torino.

JINR/Dubna takes full responsibility on software DE FACTO

GEOMETRY

It is important to have the physical model of the Muon System in PANDARoot software for full MC simulation of PANDA setup.

There is no a direct way to transfer geometry from Computer-Aided Design (CAD) systems to Geant4 or Root

Geometry status (S. Spataro):

- Simple: geometry with gas planes inside yoke without any other support material → default for simulation
- 2) Full: geometry with tubes but without support structures or electronics → still fast simulation

GEOMETRY

Current geometry issues:

- The Muon detector is integrated into the Yoke of the Solenoid Magnet which will now be designed by the Budker Institute → need a discussion with BINP colleagues.
- 2) Old geometry which doesn't match the current design and doesn't contain all materials in a realistic way!
 - a) Full models for Panda Muon system parts (Barrel, FRS, MF) are ready and were send in mid 2015 by L. Vertogradov, not integrated yet.
 - b) Even more sophisticated geometrical models for Barrel and Prototype are ready by A.Verkheev.
 - c) Model for FRS, MF is under construction now (G. Golovanov)

CAD AND GEANT4 MODELS

Detector geometry (CAD format) systems

Physical model - particle transport Monte Carlo codes like GEANT4 and ROOT

CAD AND GEANT4 MODELS

Set of tools allows to exchange the CAD-geometry to G4/ROOT compatible geometry using Geometry Description Markup Language (GDML).

STEPS OF MODELING

DIGITIZATION

Software for conversion of the simulated information into digital signals!

Digitization status (S.Spataro):

- 1) Simple: smearing the position of each MDT hit by 0.3 cm, corresponding to the cell size (1 cm) divided by $\sqrt{12}$ cm
- 2) Full: position based on tube, realistic signal simulation including time information

Current digitization issues:

- 1) Digitization procedure will be cross-checked on the Prototype.
- 2) T0 information is needed as additional input parameter

RECONSTRUCTION / SIMULATION

Reconstruction status (S.Spataro):

- 1) Simple: No clustering, real pattern recognition, hard cuts for PID -> Hard cuts are working
- 2) Full: Clustering, real pattern recognition but not cross-checked

Current reconstruction issues:

- 1) A big question to discuss (which algos to use)
- 2) No cross-check with test beam data from the Prototype

Current simulation issues:

- 1) Time-based reconstruction is not clear if it is working because the developer (Torino) left
- 2) Serious PID algorithm is absent.

RANGE SYSTEM PROTOTYPE STUDY @ CERN

- Calibration of the system's response to the different particles and energies.
- Test of algorithms for μ/π separation
- Tune digitization algorithm
- Technical issues

MOUNTING OF PROTOTYPE @ PS/ EXPERIMENTAL HALL

TEST BEAM @ PS/T9 BEAM LINE

PROTOTYPE DATA (MAY 2017 RUN)

Beam: μ, E = 2.5 GeV/c

Tube's counting rate

PROTOTYPE DATA FROM BEAM ToF

PROTOTYPE DATA ($\mu \text{ vs } \pi$)

Run 605 E = 0.5 GeV/c

RESULTS FROM THE PROTOTYPE

We have developed the class for Prototype in PANDARoot framework which describes the Prototype's geometry and allows to get MC.

E = 0.5 GeV/c MC

DATA, 2017

SUMMARY

- The model of the Panda Muon System Prototype is ready to transfer to PANDARoot software
- We have performed simulation of events with μ and hadrons.
- Prototype will be modified and new planes will be added for autumn 2017 run.

RESULTS FROM THE PROTOTYPE

DATA, 2017

