Pattern Matching in the STT

Michael Papenbrock

Department for Physics and Astronomy

September 5th, 2017 Novosibirsk, Russia

DyTER - Dynamic Track and Event Reconstruction

What is the idea?

- Focus on hyperons (displaced vertices)
- Break away from traditional event-based reconstruction
- Generate tracks and events dynamically from continuous data stream
- Use track and vertex information in event building
- $\rightarrow\,$ Track reconstruction and event building as an interdependent process
 - Write highly modularised code

DyTER - Dynamic Track and Event Reconstruction

What is our approach?

- Use SttCellTrackFinder as basis and develop it further
- Implement longitudinal momentum reconstruction (W. Andersson)
- Investigate detector signatures of hyperons in detail to guide development (J. Regina)
- Investigate possibilities using highly parallelised framework (B. Andersson, J. Nordström)
- Implement and test algorithms for complete time-based simulation/reconstruction chain (D. Steinschaden)

Question: Could pattern matching be of some use?

Pattern Matcher: Questions and Ideas

Questions

- Is it feasible with the STT and hyperons?
 - \rightarrow How many patterns will there be?
- What are the benefits?

Ideas

- Lightweight testing ground for time-based data processing
- Pre-clustering (procedure suitable for FPGAs)
- Augment SttCellTrackFinder with pattern matching algorithms or vice versa
- Stand-alone track finder using machine learning

Pattern Matcher: Concept

! Simple pattern counter unfeasible for large event numbers \rightarrow more sophisticated concept was needed

- Divide STT into 6 sectors
- Simulate desired channel (here: ΛΛ at 7 GeV, pandaroot rev. 30040)
- Store pattern as std::set of tube IDs
- Determine and store complementary information
- Merge duplicate/similar patterns
- Start matching

Pattern Matcher: Concept

Pattern Matcher: Concept

Pattern Matcher: Database Generator

- Generate events for desired channel (use ideal track finder)
- Identify patterns as tubeIDs for hits corresponding to a track
- Extract complementary information (e.g. momentum, sectorID, etc.)
- Store data as ROOT TTree

Attention

- TTree will be filled with duplicate patterns!
- \rightarrow Identify and merge identical patterns
- \rightarrow Bonus: Identify and count "similar" patterns (e.g. 90 % match)

Before merging

Count	tubelDs	sectorID	etc.	
1	1,2,3,4,5	1		
1	2,3,4,5,6	1		
1	10,11,12,13,14	3		
1	1,2,3,4,5	1		

After merging

Count	tubelDs	sectorID	etc.	
2	1,2,3,4,5	1		
1	2,3,4,5,6	1		
1	10,11,12,13,14	3		

Pattern Matcher: Matching Algorithm

- Same principle as merging
- Compare patterns against database using std::set_intersection
- Find full or partial matches in incoming data
- "Ideal" matching ratio currently under investigation

Considerations

- \bullet ROOT TTree philosophy: write once, never touch \rightarrow less than ideal for merging/sorting of database
- ? Possible other solutions: PostgreSQL, FairDB(?)
- Very simple algorithm \rightarrow Lightweight (code), good for testing purposes
- Value not only as stand-alone track finder
- $\rightarrow\,$ Possible hybrid solution with SttCellTrackFinder

Where do we go from here?

- Implement complementary data (momentum, time stamps, etc.) in database
- $\rightarrow\,$ Investigate how well these data can be "guessed" from pattern
 - Test sector-less database
 - Implement and test time-based processing (e.g. using discreet time windows)
 - Use findings to complement SttCellTrackFinder
 - Explore machine learning possibilities (possible future project)

Vagrant

- "Tool for building and managing virtual machine enviroments in single workflow"
- Use pre-existing "boxes" to quickly set up VM
- Single configuration file

Ansible

- Workflow automation, e.g. installing and configuring packages or system components
- Playbook defines what should be added/configured on a system
- Roles set up packages, install software, etc.

Vagrantfile (Ruby)

```
# disk = './workspace.vdi'
     Vagrant.configure(2) do [config]
       config.vm.box = "bento/ubuntu-16.04"
       config.vm.box check update = false
       config.vm.network "private network", ip: "192,168,33,102"
       config.vm.provider "virtualbox" do vb
      vb.gui = true
      vb.cous = 4
        vb.memory = "4096"
        vb.name = "panda"
        vb.customize ["modifyvm", :id, "--vram", "128"]
       end
       config.vm.synced folder "../../ansible", "/provisioning"
      config.vm.provision "ansible_local" do [ansible]
        ansible.provisioning_path = "/provisioning"
         ansible.inventory path = "/provisioning/hosts"
         ansible.playbook = "panda.yml"
         ansible.verbose = "v"
        ansible.limit = "panda"
       end
       config.vm.provision :reload
28 end
```

ansible playbook (YAML) panda role (YAML)

	- name: create panda directory
56	file:
	path: /panda
58	state: directory
59	mode: 0777
70	
	- name: get fairsoft
	become_usen: vagrant
	git:
74	repo: https://github.com/FairRootGroup/FairSoft
	dest: /panda/source/fairsoft
76	version: may16p1
78	- name: create fairsoft installation directory
79	become_user: vagrant
30	file:
	path: /panda/build/fairsoft
	state: directory
	mode: 0755
34	
35	- name: compile fairsoft
36	become_user: vagrant
	<pre>shell: /provisioning/roles/pandaroot/files/installFairSoft.sh > /provisioning/logs/fairsoftinstall.log</pre>
38	
39	- name: get fairroot
90	become_usen: vagrant
91	git:
92	repo: https://github.com/FairRootGroup/FairRoot.git
93	dest: /panda/source/fairroot
94	version: v-16.06b

• Setup available for PANDA virtual machine

What's in it?

- Xubuntu as base system
- Complete pandaroot toolchain

What's not?

- Development tools
- TORQUE
- Docker (either to install components or replace full VM)

Thank you for your attention!

