
Pattern Matching in the STT

Michael Papenbrock

Department for Physics and Astronomy

September 5th, 2017
Novosibirsk, Russia

0 / 19

DyTER - Dynamic Track and Event Reconstruction

What is the idea?
Focus on hyperons (displaced vertices)
Break away from traditional event-based reconstruction
Generate tracks and events dynamically from continuous data
stream
Use track and vertex information in event building

→ Track reconstruction and event building as an interdependent
process
Write highly modularised code

1 / 19

DyTER - Dynamic Track and Event Reconstruction

What is our approach?
Use SttCellTrackFinder as basis and develop it further
Implement longitudinal momentum reconstruction (W.
Andersson)
Investigate detector signatures of hyperons in detail to guide
development (J. Regina)
Investigate possibilities using highly parallelised framework (B.
Andersson, J. Nordström)
Implement and test algorithms for complete time-based
simulation/reconstruction chain (D. Steinschaden)

Question: Could pattern matching be of some use?

2 / 19

Pattern Matcher: Questions and Ideas

Questions
Is it feasible with the STT and hyperons?

→ How many patterns will there be?
What are the benefits?

Ideas
Lightweight testing ground for time-based data processing
Pre-clustering (procedure suitable for FPGAs)
Augment SttCellTrackFinder with pattern matching
algorithms or vice versa
Stand-alone track finder using machine learning

3 / 19

Pattern Matcher: Concept

! Simple pattern counter unfeasible for large event numbers →
more sophisticated concept was needed

Divide STT into 6 sectors
Simulate desired channel (here: ΛΛ
at 7 GeV, pandaroot rev. 30040)
Store pattern as std::set of tube
IDs
Determine and store
complementary information
Merge duplicate/similar patterns
Start matching

Closer look: Pattern
tubeIDs
momenta
timeStamps
sectorID
count

4 / 19

Pattern Matcher: Concept

X-axis

Y
-a

xi
s

41 cm

5 / 19

Pattern Matcher: Concept

X-axis

Y
-a

xi
s

41 cm

6 / 19

Pattern Matcher: Database Generator

Generate events for desired channel (use ideal track finder)
Identify patterns as tubeIDs for hits corresponding to a track
Extract complementary information (e.g. momentum,
sectorID, etc.)
Store data as ROOT TTree

Attention
TTree will be filled with duplicate patterns!

→ Identify and merge identical patterns
→ Bonus: Identify and count ”similar” patterns (e.g. 90 %

match)

7 / 19

Pattern Matcher: Merging

Before merging

Count tubeIDs sectorID etc.
1 1,2,3,4,5 1 ...
1 2,3,4,5,6 1 ...
1 10,11,12,13,14 3 ...
1 1,2,3,4,5 1 ...

After merging

Count tubeIDs sectorID etc.
2 1,2,3,4,5 1 ...
1 2,3,4,5,6 1 ...
1 10,11,12,13,14 3 ...

8 / 19

Pattern Matcher: Merging

generated patterns
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

310×

m
er

ge
d

pa
tte

rn
s

0

200

400

600

800

1000

1200

1400

1600

310×

black: merged identical patterns only
blue: merged 90% similar patterns

9 / 19

Pattern Matcher: Merging

generated patterns
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

310×

m
er

ge
d

pa
tte

rn
s

0

10

20

30

40

50

60

70

80

90

100
310×

black: merged identical patterns only
blue: merged 90% similar patterns

10 / 19

Pattern Matcher: Merging
htemp

Entries 4.996059e+07

Mean 1663

Std Dev 1241

pattern.tubeIDs
0 500 1000 1500 2000 2500 3000 3500 4000 4500

0

200

400

600

800

1000

3
10× htemp

Entries 4.996059e+07

Mean 1663

Std Dev 1241

pattern.tubeIDs
htemp

Entries 1629585
Mean 2.498
Std Dev 1.708

pattern.sectorID
0 1 2 3 4 5 6

0

50

100

150

200

250

300
3

10× htemp
Entries 1629585
Mean 2.498
Std Dev 1.708

pattern.sectorID

h
Entries 1629585
Mean 1.23
Std Dev 2.125

pattern count
0 10 20 30 40 50 60 70 80 90 100

10

210

310

410

510

610

h
Entries 1629585
Mean 1.23
Std Dev 2.125

11 / 19

Pattern Matcher: Matching Algorithm

Same principle as merging
Compare patterns against database using std::set intersection
Find full or partial matches in incoming data
”Ideal” matching ratio currently under investigation

12 / 19

Considerations

ROOT TTree philosophy: write once, never touch → less than
ideal for merging/sorting of database

? Possible other solutions: PostgreSQL, FairDB(?)
Very simple algorithm → Lightweight (code), good for testing
purposes
Value not only as stand-alone track finder

→ Possible hybrid solution with SttCellTrackFinder

13 / 19

Where do we go from here?

Implement complementary data (momentum, time stamps,
etc.) in database

→ Investigate how well these data can be ”guessed” from pattern
Test sector-less database
Implement and test time-based processing (e.g. using discreet
time windows)
Use findings to complement SttCellTrackFinder
Explore machine learning possibilities (possible future project)

14 / 19

Appendix: Virtualisation with Vagrant and Ansible

Vagrant
”Tool for building and managing virtual machine enviroments
in single workflow”
Use pre-existing ”boxes” to quickly set up VM
Single configuration file

Ansible
Workflow automation, e.g. installing and configuring packages
or system components
Playbook defines what should be added/configured on a
system
Roles set up packages, install software, etc.

15 / 19

Appendix: Virtualisation with Vagrant and Ansible
Vagrantfile (Ruby)

16 / 19

Appendix: Virtualisation with Vagrant and Ansible

ansible playbook (YAML) panda role (YAML)

17 / 19

Appendix: Virtualisation with Vagrant and Ansible

Setup available for PANDA virtual machine

What’s in it?
Xubuntu as base system
Complete pandaroot toolchain

What’s not?
Development tools
TORQUE
Docker (either to install components or replace full VM)

18 / 19

Thank you for your attention!

19 / 19

