

DILEPTON RADIATION FROM COMPRESSED BARYONIC MATTER

Joachim Stroth, Goethe University Frankfurt am Main / GSI Space like and Time like electromagnetic Baryonic transitions May 8-12, 2017; ECT*; Trento, Italy

• Motivation

- Spectrometer performance
- Strangeness
- Virtual Photon Radiation
- o Future
- o Summary

The QCD Phase Diagram

Search for:

- New (exotic) phases
- order transition to deconfined matter

3

- o Critical point
- EOS of dense (and hot) QCD matter

Low-temperature approach:

Chiral perturbation theory

J.W. Holt, M. Rho, W. Weise arXiv1411.6681

The QCD Risotto ...

... what, if you cook it too long !?

The Quest for In-medium Modifications

25 years ago:

 $_{\odot}\,$ Brown/Rho, Hatsuda/Lee: meson shifts as a signal for the restoration of the sb $\chi s.$

$$m^* = m(1 - 0.18[^{
ho}/
ho_0]) \text{ or } m^* = m\left(\langle q\bar{q} \rangle^* / \langle q\bar{q} \rangle \right)^u$$

As of today:

1

o no real evidence for dropping masses,

 $_{\circ}$ instead, ho strongly broadened (in-medium ho_{0} propag.):

cf. talk by Ralf Rapp

Explore the QCD Phase Diagram at high Density

Heavy-ion collision at SIS18 energies:

- Baryon-dominated system throughout the evolution.
- Comparatively long lifetime of the dense "fireball".

T. Galatyuk, F. Seck, et al.,arXiv-1512-08688

Theoretical Approaches to Medium Radiation

SPECTROMETER PERFORMANCE

The HADES Spectrometer

• High Acceptance Di-Electron Spectrometer

- Designed in the nineties to measure the in-medium ρ mass-shift in 1A GeV Au+Au collisions.
- combines aspects of hadron physics with (ultra-) relativistic heavy-ion physics.
- Detector design
 - Toroidal spectrometer with six-sector superconducting magnet (momentum kick: 0.3 - 0.15 Tm)
 - Low-mass tracking with drift chambers
 - RICH surrounding the target in field free region
 - RPC and scintillator based time-of-flight systems
 - Electromagnetic Shower Detector
 - Various complementary detector systems (FW, Cerberus, T0)

HADES

Performance (hadrons)

2

m_t-m₀ [MeV/c²

PID (tof, dE/dx)

- Large acceptance around 0 mid-rapidity.
- Centrality and event 0 plane via forward hodoscope (FW)
- o reduced acceptance for elementary (exclusive channels)

 $\epsilon_{acc.} \times \epsilon_{det.} \times \epsilon_{reco.}$

HADES

Electron/positron ID

Multivariate analysis (neural network) using:

- $_{\odot}$ Particle velocity
- $_{\odot}$ dE/dx in MDC and ToF
- Electromagnetic showe
- Cherenkov radiation
- Purity derived from "RICH rotation" > Random matches

STRANGENESS

Hadron Production in Au + Au ($\sqrt{s} = 2.4 A \text{GeV}$)

Hadron yields and their centrality dependence in accord with the assumption of a "thermalized" system.

Observed yield in Ar+KCl much above expectation from SHM.

$$P_{\Xi^{-}} \cong 0, 1 \cdot P_{\langle S\bar{S} \rangle} \cdot P_{\langle S\bar{S} \rangle}$$

Attempt to explain cascade yield by decay of heavy baryonic resonances (UrQMD).

$$N^* \to \Xi + K + K$$

DILEPTON RADIATION

HADES

Dilepton emission in pp and pA collisions

First measurement of ω decay in cold matter in the relevant momentum range. Indication for strong broadening of the ω .

HADES

Inclusive Dielectron Yields from Au + Au ($\sqrt{s} = 2.4 \, A \text{GeV}$)

Acceptance corrected excess radiation. Contributions from first chance and late emission subtracted.

HADES

Lifetime & Temperature

Enhancement in the region above 150 MeV/c² reflects generations of resonances before final pion is emitted.

E\$

The role of virtual pions in dilepton production

Three different collision systems, three surprises but likely the same underlying mechanism

FUTURE

HADES Strategy

Until 2018 (upgrade, preparation for FAIR phase 0)

- o Installation of CBM/HADES UV photo-detector and ECAL
- Install new forward detection system, STS and fRPC

2018-202x

(experiment campaign at SIS18 - FAIR phase 0)

- o DAQ und MDC FEE upgrade 200 kHz interaction rate
- o Backward neutron detector (neuLAND modules)
- o Strong physics program at SIS18, 1 run per year

202x on (HADES at SIS100)

- Transfer spectrometer to new experimental hall
- Cold matter physics (p+A)
- Exclusive measurements (p+p)
- (A+A collisions for comparison)

production

pion beam

cave H

iclear Physics News

target

The HADES Pion Beam Facility

• Primary beam: 10¹¹ N (2 AGeV) /spill • 10¹¹ p (3.5 GeV) /spill π^{-} 10 SIS fast ramping spill in ∆p/p=8% • Spill: 4s cycle • Secondary beam (π^-, π^+) . 10 pions per Only combination of pion beam with dilepton spectrometer □ p+Be 3.5 GeV 10 C+Be 2.0 AGeV world-wide. 1.5 2 2.5 0.5 pion momentum [GeV/c] Can possibly be realized also at Prog. Part. Nucl. Phys. 42 (1999) 274 JPARC. Nuclear Physics News 25,2 (2015)

RICH MAPMT UV Detector (with CBM)

Added value

- Replaces aging Csl photo detector
- will provide substantially improved detection efficiency

- MAPMT (Hamamatsu) based detector modules
- Joint design and realization effort
- Design compatible for use in HADES and CBM RICH

The Electromagnetic Calorimeter

- Based on recycled OPAL lead glass.
- o TDR approved 2013
- Replaces SHOWER

- Added value:
 - Neutral mesons
 - Electromagnetic decays of baryons / hyperons
 - Augments e⁻ e⁺ identification

May 2013

700 800

800 900 1000 M_{yy} [MeV/c²]

100 200 300 400 500 600

dE/dx via ToT

Forward detector system (with PANDA)

- Tracking stations (FTS1, FTS2) based on PANDA Straw technology
- Forward TOF based on RPC prototypes developed for neuLAND.

2 tracking stations FTS1

Added value

- Substantially increased acceptance for exclusive channels.
- $_{\odot}\,$ Will not be used for A+A runs.

HADES Program for Phase-0

- Electromagnetic structure of baryons in the time-like region.
- Strangeness in (baryonic, non-strange) resonances.
- Excitation spectrum of strange resonance.
- Microscopic structure of dense & hot matter and cold matter (SRC).
- Signatures for exotic properties of dense baryonic matter.

01040
51518
$\pi \rightarrow DE$
$n, p \rightarrow PL$
$\pi n \rightarrow \Lambda$
$n, p \rightarrow A$
$A \rightarrow A$

The HADES Collaboration

