STRUCTURE OF THE DI- AND -TRIBARYONIC EXOTIC COMPOUNDS

Humberto Garcilazo Instituto Politecnico Nacional, Mexico City

Work done in collaboration with

A. Gal (dibaryons),A. Valcarce, and J. Vijande (tribaryons)

DIBARYONS

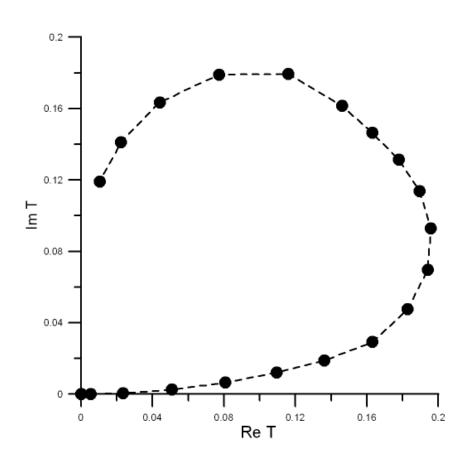
Δ Resonance

 $I(J^{P}) = 3/2(3/2^{+})$ $m_{\Delta} = 1232 \text{ MeV}$ $\Gamma_{\Delta} = 115 \text{ MeV}$ $\Delta \rightarrow \pi \text{N}$

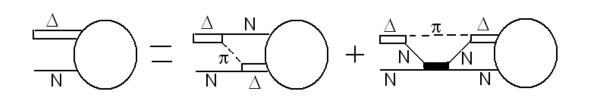
 $J^{P} = 2^{+}$ Dibaryons ($\Delta N, \Delta \Lambda, \Delta \Lambda_{C}$) $J^{P} = 3^{+}$ Dibaryon ($\Delta \Delta$)

$\Delta N I(J^P) = 1(2^+) Dibaryon$

- NN ¹D₂ amplitude 1880 < W < 2260 MeV.
- Hoshizaki resonance at
- W = 2144 i55 MeV



J^P=2⁺ πNN Faddeev Equations



 $\Delta \to \pi N$

$P_{33} \pi N$ Interaction

$$V_3(p_3, p_3') = \lambda_3 g_3(p_3) g_3(p_3'),$$

$$t_3(\omega_3; p_3, p_3') = g_3(p_3)\tau_3(\omega_3)g_3(p_3'),$$

$$\tau_3^{-1}(\omega_3) = \lambda_3^{-1} - \int_0^\infty p_3^2 dp_3 \frac{[g_3(p_3)]^2}{\omega_3 - \sqrt{m_N^2 + p_3^2} - \sqrt{m_\pi^2 + p_3^2} + i\epsilon}.$$

$$\tau_3^{-1}(W;q_3) = \lambda_3^{-1} - \int_0^\infty p_3^2 dp_3 \frac{[g_3(p_3)]^2}{W - \sqrt{q_3^2 + (\sqrt{m_N^2 + p_3^2} + \sqrt{m_\pi^2 + p_3^2})^2} - \sqrt{q_3^2 + m_N^2} + i\epsilon},$$

$$g_3(p_3) = p_3 \exp(-p_3^2/\beta_3^2) + Cp_3^3 \exp(-p_3^2/\alpha_3^2),$$

$${}^{3}S_{1} \text{ NN Interaction}$$
$$V_{1}(p_{1}, p_{1}') = \sum_{m=1}^{2} \lambda_{1}^{m} g_{1}^{m}(p_{1}) g_{1}^{m}(p_{1}'),$$
$$t_{1}(\omega; p_{1}, p_{1}') = \sum_{m,n=1}^{2} g_{1}^{m}(p_{1}) \tau_{1}^{mn}(\omega) g_{1}^{n}(p_{1}'),$$

$$\tau_1^{mn}(\omega) = \frac{G_1^{mn}(\omega)}{G_1^{11}(\omega)G_1^{22}(\omega) - G_1^{12}(\omega)G_1^{21}(\omega)},$$

$$G_1^{mn}(\omega) = \frac{1}{\lambda_1^m} \delta_{mn} - (-)^{m+n} \int_0^\infty p_1^2 dp_1 \frac{g_1^m(p_1)g_1^n(p_1)}{\omega - 2\sqrt{M^2 + p_1^2} + i\epsilon}$$
$$g_1^m(p_1) = \frac{1}{p_1^2 + [\alpha_1^m]^2}$$

Faddeev Equation

$$T_3(W;q_3) = \int_0^\infty dq'_3 M(W;q_3,q'_3)\tau_3(W;q'_3)T_3(W;q'_3),$$

$$M(W;q_3,q_3') = K_{23}(W;q_3q_3') + 2\sum_{mn} \int_0^\infty dq_1 K_{31}^m(W;q_3,q_1)\tau_1^{mn}(W;q_1)K_{13}^n(W;q_1q_3'),$$

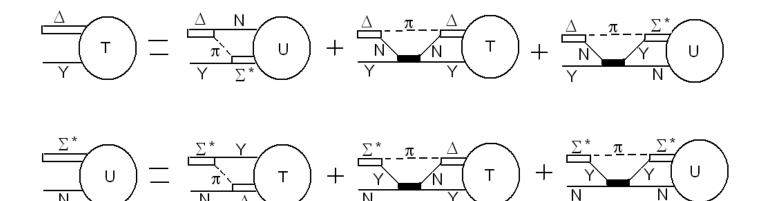
$$K_{23}(W;q_3,q_3') = \frac{1}{2}q_3q_3' \int_{-1}^{1} \frac{d\cos\theta \, g_3(p_3) \, g_3(p_3') b_{23}^{\frac{3}{2}\frac{3}{2}} \hat{p}_3 \cdot \hat{p}_3'}{W - \sqrt{M^2 + q_3^2} - \sqrt{\mu^2 + q_3^2 + q_3'^2 + 2q_3q_3' \cos\theta} - \sqrt{M^2 + {q_3'}^2 + i\epsilon}},$$

$$K_{31}^{m}(W;q_{3},q_{1}) = \frac{1}{2}q_{3}q_{1}\int_{-1}^{1} \frac{d\cos\theta \,g_{3}(p_{3})\,g_{1}^{m}(p_{1})b_{31}^{\frac{3}{2}0}\hat{p}_{3}\cdot\hat{q}_{1}}{W - \sqrt{M^{2} + q_{3}^{2}} - \sqrt{M^{2} + q_{1}^{2} + q_{3}^{2} + 2q_{1}q_{3}\cos\theta} - \sqrt{\mu^{2} + q_{1}^{2}} + i\epsilon},$$

$$b_{ij}^{I\ I} = (-)^{I\ +\tau\ -I} \sqrt{(2I_i+1)(2I_j+1)} W(\tau_j \tau_k I \tau_i; I_i I_j),$$
$$q_i \to q_i e^{-i\phi},$$

W = 2151 - i60 MeV

$J^{P}=2^{+} \Delta \Lambda$ Faddeev Equations



 $\Delta \to \pi N$

 $\Sigma^*(1385) \to \pi\Lambda, \ \pi\Sigma$

$\pi\Lambda-\pi\Sigma$ Interaction

$$V_2^{YY'}(p_2, p_2') = \gamma_2 g_2^Y(p_2) g_2^{Y'}(p_2'),$$

$$t_2^{YY'}(p_2, p_2'; \omega_0) = g_2^Y(p_2)\tau_2(\omega_0)g_2^{Y'}(p_2'),$$

$$\tau_2^{-1}(\omega_0) = \frac{1}{\gamma_2} - \sum_Y \int_0^\infty p_2^2 dp_2 \frac{[g_2^Y(p_2)]^2}{\omega_0 - \sqrt{m_\pi^2 + p_2^2} - \sqrt{m_Y^2 + p_2^2} + i\epsilon}.$$

$$g_2^{\Lambda}(p_2) = p_2(1 + Ap_2^2) \exp(-p_2^2/\beta_2^2), \quad g_2^{\Sigma}(p_2) = Bg_2^{\Lambda}(p_2),$$

³S₁ NY Interaction

$$V_3^{YY'}(p_3, p_3') = \gamma_3^{YY'} g_3^Y(p_3) g_3^{Y'}(p_3'),$$

$$t_3^{YY'}(p_3, p_3'; \omega_0) = g_3^Y(p_3)\tau_3^{YY'}(\omega_0)g_3^{Y'}(p_3'),$$

$$g_3^Y(p_3) = \frac{1}{1 + (p_3/\alpha_3^Y)^2},$$

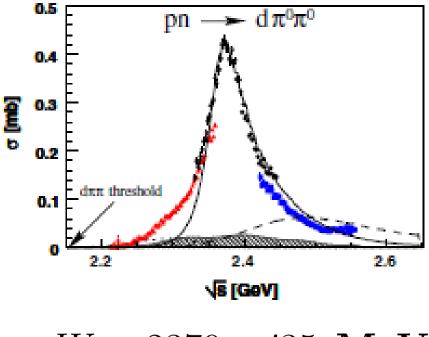
$$A = 0.25 \Longrightarrow E = 57 - i2.6$$
 MeV

$$A = 0.35 \Longrightarrow E = 61 - i3.2 \text{ MeV}$$

$$A = 0.45 \Longrightarrow E = 65 - i3.8 \text{ MeV}$$

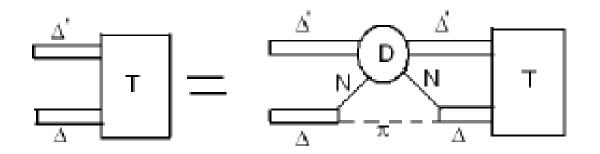
$J^{P}=2^{+} \Delta \Lambda_{C}$ Dibaryon $\Lambda \to \Lambda_C(2286),$ $\Sigma^*(1385) \to \Sigma^*_C(2520),$ $V_2(p_2, p'_2) = \gamma_2 q_2^{\Lambda_C}(p_2) q_2^{\Lambda_C}(p'_2).$ $g_2^{\Lambda_C}(p_2) = p_2(1 + Ap_2^2) \exp(-p_2^2/\beta_2^2),$ $A = 0.1 \Longrightarrow E = -14.6 \text{ MeV}$ $A = 0.4 \Longrightarrow E = -4.0 \text{ MeV}$ $A = 0.7 \Longrightarrow E = 7.0 - i0.01 \text{ MeV}$

$I(J^{P})=0(3^{+}) \Delta \Delta$ Dibaryon (ABC Resonance)



 $W = 2370 - i35 \,\,\mathrm{MeV}$

$\Delta\Delta$ Faddeev Equation



 $\Delta' = \text{stable } \Delta$ $m_{\Delta'} = 1232 \text{ MeV}$ $V_{\pi\Delta'} = 0$ $D = 1(2^+)$ Dibaryon

NN ¹D₂ Amplitude

- 3-channel separable potential
- 1) NN (d-wave)
- 2) NN' (s-wave)
- 3) N Δ ' (s-wave)
- N' is a ficticious particle with $m_{N'}=m_{\pi}+m_{N}$ and P_{13} quantum numbers

NN-NN'-N Δ ' T-matrix

 $V_1^{mn}(p_1, p_1') = \lambda_1 g_1^m(p_1) g_1^n(p_1'); \quad m, n = 1 - 3,$

 $t_1^{mn}(\omega_1; p_1, p_1') = g_1^m(p_1)\tau_1(\omega_1)g_1^n(p_1'),$

$$\tau_1^{-1}(\omega_1) = \lambda_1^{-1} - \sum_{r=1}^3 \int_0^\infty p_1^2 dp_1 \frac{[g_1^r(p_1)]^2}{\omega_1 - \sqrt{m_N^2 + p_1^2} - \sqrt{m_r^2 + p_1^2} + i\epsilon}$$

$$g_1^n(p_1) = \frac{p_1^\ell}{[1+p_1^2/(\alpha_1^n)^2]^{1+\ell/2}} \left[1 + A_1^n \frac{p_1^2}{1+p_1^2/(\alpha_1^n)^2} \right],$$

NN ¹D₂ Amplitude

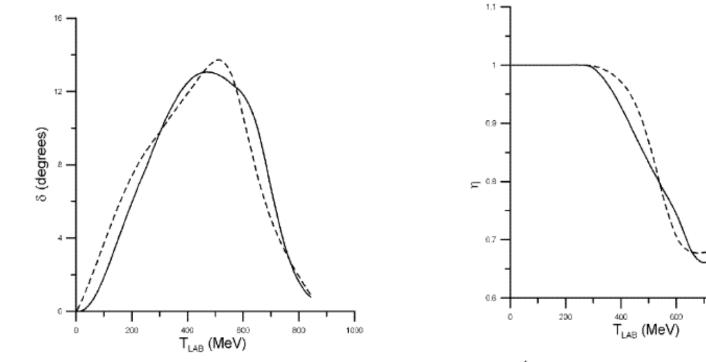


FIG. 2: The ${}^{1}D_{2}$ NN phase shift δ . Dashed: Arndt *et al.* [20]. Solid: Eq. (10) best fit for $A_{1} = A_{2} = A_{3} = 1$.

FIG. 3: The ${}^{1}D_{2}$ NN inelasticity η . Dashed: Arndt *et al.* [20]. Solid: Eq. (10) best fit for $A_{1} = A_{2} = A_{3} = 1$.

600

1000

Integral Equation

 $T(W;q_3) = \int_0^\infty dq'_3 M(W;q_3,q'_3)\tau_3(W;q'_3)T(W;q'_3),$

$$M(W;q_3,q_3') = 2\int_0^\infty dq_1 K_{31}(W;q_3,q_1)\tau_1(W;q_1)K_{13}(W;q_1q_3'),$$

$$K_{31}(W;q_3,q_1) = \frac{1}{2}q_3q_1 \int_{-1}^{1} d\cos\theta \, \frac{g_3(p_3) \, g_1^{N\Delta'}(p_1)\hat{p}_3 \cdot \hat{q}_1}{W - \sqrt{m_1^2 + q_1^2} - \sqrt{m_2^2 + q_1^2 + q_3^2 + 2q_1q_3\cos\theta} - \sqrt{m_3^2 + q_3^2} + i\epsilon}.$$

$$\tau_3^{-1}(W;q_3) = \lambda_3^{-1} - \int_0^\infty p_3^2 dp_3 \frac{[g_3(p_3)]^2}{W - \sqrt{q_3^2 + (\sqrt{m_N^2 + p_3^2} + \sqrt{m_\pi^2 + p_3^2})^2} - \sqrt{q_3^2 + m_{\Delta'}^2} + i\epsilon}$$

$$m_{\Delta'} \to 1211 - i(2/3)49.5 \text{ MeV}$$

 $\mathcal{D}_{03}: M = 2363 \pm 20, \Gamma = 65 \pm 17 \text{ (MeV)}.$

Conclusions

- Faddev method can explain ΔN and $\Delta \Delta$ resonances
- It predicts a $\Delta\Lambda$ resonance about 60 MeV above $\pi\Lambda N$ threshold with width 6-8 MeV
- Possible $\Delta \Lambda_{C}$ bound state

TRIBARYONS

 We use Malfliet-Tjon type two-body interactions adjusted to the low-energy data of the Nijmegen ESC08c models

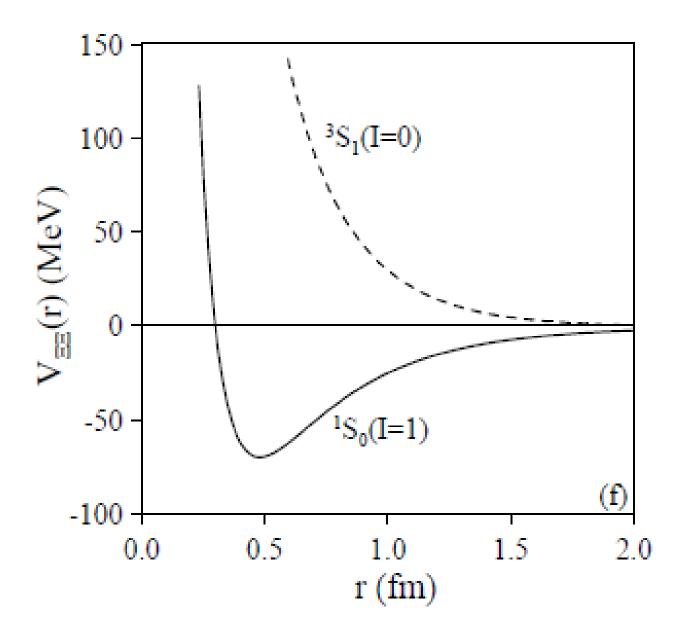
Malfliet-Tjon models of the S-wave NN, N Λ , N Ξ , and $\Xi\Xi$ interactions

$$V^{ij}(r) = -A\frac{e^{-\mu_A r}}{r} + B\frac{e^{-\mu_B r}}{r}$$

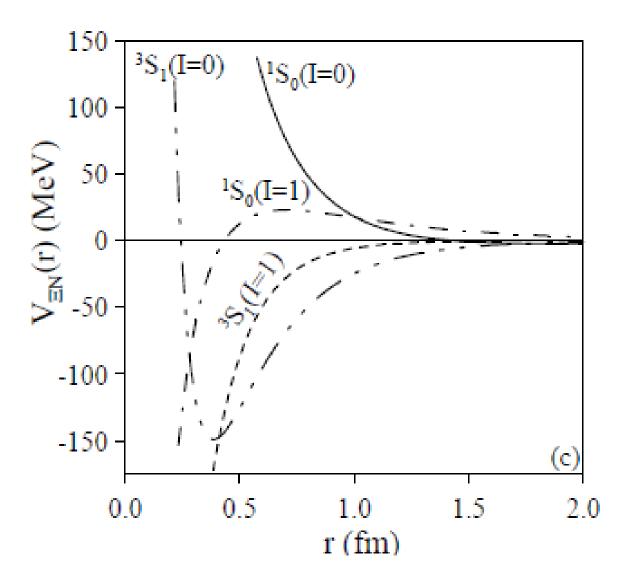
these models give

Triton binding energy of 8.3 MeV

Hypertriton separation energy of 0.14 MeV



Nijmegen EN S-wave interactions



The state NN Ξ

 $(I, J^P) = (1/2, 3/2^+)$

$NN \longrightarrow^{3} S_{1}(I = 0)$ $N\Xi \longrightarrow^{3} S_{1}(I = 0),^{3} S_{1}(I = 1)$ B=17.2 MeV

The decay process $N \Xi \rightarrow \Lambda \Lambda$

which takes place in the channel $(I,J^P) = (0,0^+)$ does not contribute in a pure S-wave configuration

Maximal isospin states

The decay process $N \equiv \longrightarrow \Lambda \Lambda$ can not occur if the Ξ hypernucleus is in a state of maximal isospin, i.e., if it consists only of neutrons and negative Ξ 's or only protons and neutral Ξ 's. Therefore, these states, if bound, would be stable.

 $\begin{array}{l} \frac{2}{\Xi}H & (1,1^{+}) & (\mathsf{B}=1.6 \; \mathsf{MeV}) \\ \frac{3}{\Xi}H & (3/2,1/2^{+}) & (\mathsf{B}=3.0 \; \mathsf{MeV}) \\ \frac{3}{\Xi\Xi}He(3/2,1/2^{+}) & (\mathsf{B}=4.5 \; \mathsf{MeV}) \\ \frac{4}{\Xi\Xi}He(2,0^{+}) & (\mathsf{B}=7.4 \; \mathsf{MeV}) \end{array}$

and perhaps a full periodic table of stable Ξ hypernuclei

The $\Lambda\Lambda N - \Xi NN (1/2, 1/2^+)$ resonance

- 1) Separable potentials tailored to the ESC08 models in all S-wave interactions.
- 2) Calculation in the complex plane to search for either a bound state or a resonance
- 3) Found a $~\Lambda\Lambda N~$ resonance at E=23.4 -i0.045 MeV, just below the $~\Xi d~$ threshold.
- In spite of the large phase space available (about 23 MeV) the width is very small (about 0.09 MeV).
- 5) This behavior is due to the fact that the uncoupled $\pm NN$ system has a bound state very near the $\pm d$ threshold.

Conclusions

- 1) ESC08c models predict stable and unstable di- tri- and up –baryons.
- 2) Other models (chiral quark models, effective field theories, lattice models) contain also considerable amounts of attraction and may generate similar results.