

Overview of exotica production at CMS

9.11.2017

Latest results from the Run I data

Nazar Bartosik (INFN Torino) for the CMS collaboration

Outline

- CMS experiment introduction
- Overview of main CMS results:
 - Y(4140) [7 TeV]
 - X(3872) [7 TeV]
 - X_b partner of X(3872) [8 TeV]
 - X(5568) [8 TeV]

CMS experiment: detector

Compact Muon Solenoid: detector optimised for measuring muons

Precise track reconstruction:

- p_T resolution: Δp_T/p_T ≈ 1% (barrel)
- tracking efficiency: > 99% (central)
- impact-parameter resolution: down to 15 μ m •

Excellent muon identification:

- wide rapidity coverage: Inl < 2.4
- m(µµ) resolution: Δm/m ≈ 0.6%
- fake rate: ε(μ | π, K, p) ≤ 0.1%

Nazar Bartosik

Overview of exotica production at CMS

CMS experiment: data

Collecting data from *pp* collisions at increasing centre-of-mass energies:

Dedicated set of triggers optimised for quarkonia states

based on muons and tracks

CMS BPH Public Results

CMS-DP-2016-059

Nazar Bartosik

Overview of exotica production at CMS

4

 10^{2}

Y(4140) observation

Phys. Lett. B 734 (2014) 261-281

- exotic meson candidate
- first observed by CDF in 2009
- CMS analysed peaking structures in the $J/\psi\phi$ mass spectrum from $B^{\pm} \rightarrow J/\psi\phi K^{\pm}$ decays

Y(4140): introduction

CDF reported a 3.8 σ evidence for a narrow peak in m(J/ $\psi \phi$) spectrum from $B^+ \rightarrow J/\psi \phi K^+$ decays: m = 4143.0 ± 3.1 MeV/c² [2009]

- Search by Belle did not confirm it [2010]
- Same peak observed by $\mathcal{D}F$ at >5 σ : [201 #]
 - m = 4143.4 ± 3.1 Me $/c^2$
- No evidence by LHCb assurement: [2012]
 - upper limit 2.4 σ away from the CDF result

Proposed interpretations:

- *cscs* tetraquark;
- threshold kinematic effect;
- hybrid charmonium;
- $D_s^*\overline{D}_s^*$ molecule molecular strange partner of Y(3940);

2

16

18

22

 $m^2(J/\psi\phi)$ (GeV²/c⁴)

24

20

m(μ+μ-K+K-) – m(μ+μ-)

Y(4140): analysis method

Same $m(J/\psi \phi)$ spectrum from $B^{\pm} \rightarrow J/\psi \phi K^{\pm}$ decays studied by CMS to further investigate this peaking structure [2014]

Using 5.2 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV

Selecting events with ≥ 2 muons $(J/\psi \rightarrow \mu\mu) + \geq 3$ tracks $(K^{\pm}, \phi \rightarrow K^{\pm}K^{-})$

- $p_T(J/\psi) > 7 \text{ GeV}; \quad p_T(K^{\pm}) > 1 \text{ GeV};$
- B+ transverse decay length > 3σ ;

Y(4140): mass spectrum

Invariant-mass spectrum within $\pm 3\sigma$ around the B^+ mass:

fitted by a gaussian (—) and a 2nd order polynomial (---) to obtain *B*+ yield

Fitting $m(J/\psi \phi K)$ to extract B⁺ signal yield in every $\Delta m = 20$ MeV bin

Fitting Δm distribution to extract the two structures yield

- S-wave Breit-Wigner (BW) convoluted with mass resolution; [signal]
- 3-body Phase Spase Shape (PS); [background]

Nazar Bartosik

Overview of exotica production at CMS

Y(4140): results

Properties of the lower-mass resonance determined from the fit: $m_1 = 4148.0 \pm 2.4^{\text{stat.}} \pm 6.3^{\text{syst.}} \text{ MeV/c}^2 \quad \Gamma_1 = 28^{+15} \pm 19^{\text{syst}} \text{ MeV}$

Significance of the first peak > 5σ

Mass and width consistent with the Y(4140) values reported by CDF

BR relative to $B^+ \rightarrow J/\psi \varphi K^+$: 0.1 ±30%^{stat}

 consistent with the CDF result and upper limit by LHCb

Evidence for a second mass peak:

• $m_2 = 4313.8 \pm 5.3^{\text{stat}} \pm 7.3^{\text{syst}} \text{ MeV/c}^2$ $\Gamma_2 = 38 \pm 30_{-15}^{\text{stat}} \pm 16^{\text{syst}} \text{ MeV}$

Conventional charmonium mesons would have larger widths at these mass values \rightarrow must be something exotic

Y(4140): reflection studies

Possibility of presence of two-body resonances was further investigated: fitting m($J/\psi \phi K$) in intervals of m(K+K-K+) = 40 MeV

Excluding excess region from the plot \rightarrow

• Y(4140) not affected by ϕK^+ resonances

Using only excess region in the plot \rightarrow

 second peak can be affected by φK+ resonances

Nazar Bartosik

Overview of exotica production at CMS

Y(4140): conclusions

Y(4140) structure found by CDF also confirmed by CMS

- measured mass and width consistent with CDF results
- relative BR consistent with CDF results and LHCb upper limit
- statistical significance of the second peak can't be determined reliably due to possible reflections from two-body decays
- further studies, including full amplitude analysis, needed to understand the nature of the peaking structures
- Run-II data will help a lot in extracting pure sample of B⁺ with sufficient statistics

X(3872) differential cross section

J. High Energy Phys. 04 (2013) 154

- first exotic charmonium candidate
- discovered by Belle in 2003
 - still no clear understanding of its nature
- CMS analysed decays into $J/\psi\pi^+\pi^-(J/\psi \rightarrow \mu^+\mu^-)$ to study it further

Nazar Bartosik

X(3872): introduction

Belle reported a 10 σ observation of a narrow peak in $m(J/\psi\pi^+\pi^-)$ spectrum from $B^{\pm} \rightarrow K^{\pm}J/\psi\pi^+\pi^-$ decays: $m = 3872.0 \pm 0.8 \text{ MeV/c}^2$ [2003]

Confirmed by CDF and DØ a year after [2004]

Phys. Rev. Lett. 91, 262001

Currently available hypotheses: charmonium state, loosely bound molecular state or a tetraquark

Theoretical predictions of differential cross sections of prompt X(3872) production are available *(calculated in the NRQCD framework)*

Nazar Bartosik

Overview of exotica production at CMS

X(3872): analysis overview

CMS detector well suited for measurement of the $\mu^+\mu^-\pi^+\pi^-$ final state

Using 4.8 fb⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV $\rightarrow -12$ K reconstructed events

Kinematic region:

- 10 < p_T < 50 GeV; |y| < 1.2;
- ΔR(J/ψ, π) < 0.55 to reduce combinatorial background

Measured several aspects of the process:

- 1. X(3872) / $\psi(2S)$ cross-section ratio vs p_T
- 2. non-prompt fraction vs p_T
- 3. $\pi^+\pi^-$ invariant mass distribution
- + prompt X(3872) cross section vs p_T
 - using (1), (2) and $\sigma(\psi(2S))$ measured earlier

X(3872): cross-section ratio

Ratio allows to avoid many systematic uncertainties:

 $R = \frac{\sigma(\text{pp} \to X(3872) + \text{anything}) \cdot \mathcal{B}(X(3872) \to J/\psi\pi^{+}\pi^{-})}{\sigma(\text{pp} \to \psi(2S) + \text{anything}) \cdot \mathcal{B}(\psi(2S) \to J/\psi\pi^{+}\pi^{-})} = \frac{N_{X(3872)} \cdot A_{\psi(2S)} \cdot e_{\psi(2S)}}{N_{\psi(2S)} \cdot A_{X(3872)} \cdot e_{X(3872)}}$

X(3872) and $\psi(2S)$ assumed to be unpolarised

Acceptance corrections depend on assumptions about the angular distribution of the final-state muons and pions

• this effect is minimised in fiducial cross sections (kinematic requirement on muons, dimuons and pions in the phase-space definition)

X(3872): non-prompt fraction

X(3872) can be produced from B-hadron decays (non-prompt production)

- non-prompt fraction based on "pseudo-proper" decay length (Ixy) for selection of sample enriched in non-prompt candidates
 - $l_{xy} > 100 \ \mu\text{m}$: efficiency: 80%; prompt contribution: 0.1%;
- determined from the ratio:

non-prompt

total

CMS $\sqrt{s} = 7 \text{ TeV}$

L = 4.8 fb⁻¹ + data

total fit

background

Average non-prompt fraction:

 $0.263 \pm 0.023^{stat} \pm 0.016^{syst}$

No significant p_{T} dependence observed

Overview of exotica production at CMS

Nazar Bartosik

X(3872): absolute cross-section

Absolute prompt cross section is determined as a function of p_T using results of the previous measurement [JHEP02 (2012) 011]

$$\sigma_{X(3872)}^{\text{prompt}} \cdot \mathcal{B}(X(3872) \to J/\psi\pi^{+}\pi^{-}) = \frac{1 - \int_{X(3872)}^{B}}{1 - f_{\psi(2S)}^{B}} \cdot \mathbb{R} \cdot \left(\sigma_{\psi(2S)}^{\text{prompt}} \cdot \mathcal{B}(\psi(2S) \to \mu^{+}\mu^{-}) \right) \cdot \frac{\mathcal{B}(\psi(2S) \to J/\psi\pi^{+}\pi^{-})}{\mathcal{B}(\psi(2S) \to \mu^{+}\mu^{-})}$$

this measurement PDG

Measured cross section compared to NRQCD prediction [Phys.Rev.D81:114018]

- shape described reasonably well
- absolute value overestimated by 3σ

Integrated cross section also measured:

 $\sigma^{\text{prompt}} = 1.06 \pm 0.11^{\text{stat}} \pm 0.15^{\text{syst}} \text{ nb}$

X_b search

PLB 727 (2013) 57

- beauty partner of X(3782)
 - search motivated by observations of X(3782)
- CMS analysed final states with $Y(1S)\pi^+\pi^-(Y(1S) \rightarrow \mu^+\mu^-)$ to look for X_b signature
- using 20.7 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV

Nazar Bartosik

Overview of exotica production at CMS

X_b: introduction

In analogy to X(3872), X_b is expected to exist with 10 < m(X_b) < 11 GeV and decay to $Y(1S)\pi^+\pi^-$ with a sizable rate

Analysis strategy:

look for a peak in the m(Y(1S)π+π-) spectrum within 10 - 11 GeV, other than Y(2S) or Y(3S)

No significant excess observed:

• setting upper limit on $R = X_b / Y(2S)$ cross-section ratio

Observed upper limit on R: 0.9 - 5.4 % at 95% CL depending on m(X_b)

Nazar Bartosik

Overview of exotica production at CMS

X(5568) search

<u>CMS-PAS-BPH-16-002</u>

- tetraquark candidate
- observed by DØ last year [Phys. Rev. Lel. 117, 022003]
- CMS prepared a preliminary result of the search for $B_s\pi^{\pm}$ candidates using B_s decays to $J/\psi\phi$

X(5568): introduction

DØ reported an evidence for a narrow peak in $m(B_s\pi^{\pm})$ spectrum $m = 5567.8 \pm 2.9^{\text{stat} + 0.9}_{-1.9}^{\text{syst}} \text{ MeV/c}^2$ $\Gamma = 21.9 \pm 6.4^{\text{stat} + 5.0}_{-2.5}^{\text{syst}} \text{ MeV}$

140

120

N (B_s⁰) / 20 MeV/c² 07 09 08 01 07

5.5

5.55

D0 Run II. 10.4 fb1

5.8

5.75

5.85

Not confirmed by LHCb search [2016]

CMS performed a search in the final state:

 $X(5568) \rightarrow B_{\rm s}\pi^{\pm} \rightarrow J/\psi \varphi \pi^{\pm} \rightarrow \mu^+ \mu^- K^+ K^- \pi^{\pm}$

Signal and sideband regions look the same

Nazar Bartosik

Overview of exotica production at CMS

X(5568): upper limit

Upper limit on the relative production rate (ρ_X) wrt. to B_s is evaluated

$$\rho_X \equiv \frac{\sigma(pp \to X(5568) + \text{anything}) \times \mathcal{B}(X(5568) \to B_s^0 \pi^{\pm})}{\sigma(pp \to B_s^0 + \text{anything})} = \frac{N_{X(5568)}}{N_{B_s^0}} \frac{\epsilon_{B_s^0}}{\epsilon_{X(5568)}}$$

Unbinned extended ML fit performed to set the upper limit on X(5568) yield:

ρ_{X(5568)} < 3.9% at 95% C.L.

No evidence for X(5568) found by CMS This is in disagreement with DØ result: $\rho_{X(5568)} = 8.6 \pm 1.9^{\text{stat}} \pm 1.4^{\text{syst}}$ %

Summary

- CMS is perfectly suitable for heavy-flavor physics
- Important contributions to studies of exotic states made by CMS:
 - observation of Y(4140)
 - measurement of X(3872) differential cross section
 - search for X_b partner of X(3872)
 - search for X(5568)
- Not all searches resulted in observed particles, but Run-II data is bringing a lot of opportunities

Thank you for attention