Second EMMI Workshop @ Torino, Italy

Electro-photo production of Λ hypernuclei and perspecitves

SATOSHI N. NAKAMURA TOHOKU UNIVERSITY

08 November 2017

History of Experimental Study on Hypernuc<mark>lei</mark>

1953 discovery of hypernucleus (emulsion with cosmic-ray, by Danysz and Pniewski)

1970s CERN, BNL Counter experiments with Kaon beam

 1980s BNL-AGS, KEK-PS Counter experiments with K/π beam
 1998- γ-spectroscopy with Hyperball FINI

FINUDA at DAΦNE

 $\Phi \rightarrow K^+ K^- (49\%)$

2000~ (e,e'K⁺) spectroscopy @ JLab $Z(e^{-},e'K^{+})_{\Lambda}(Z-1)$ reaction

Meson beam experiments at J-PARC

Decay π @ Mainz

HI-Beams @ GSI, RHIC, LHC

(e,e'K⁺) vs. others

 γ -ray spectroscopy

Super high resolution (a few keV) But only **level spacing** measurable

decay π

Excellent mass resolution (~0.1 MeV) But only **mass of ground state of light HY**

HI beam spectroscopy

Exotic light hypernuclei (p, n rich) Invariant mass, a few MeV resolution

Hypernuclear experiments at JLab

E89-009 (2000) : Existing spectrometers, SOS + Enge Proof of Principle

E01-011 (2005) : Construction of HKS, Tilt Method Λ , Σ^0 , $^7_{\Lambda}$ He, $^{12}_{\Lambda}$ B, $^{28}_{\Lambda}$ Al Light Hypernuclei

E94-107 (2004-5) Two HRSs + SC Septum Λ , Σ^0 , ${}^9_{\Lambda}$ Li, ${}^{12}_{\Lambda}$ B, ${}^{16}_{\Lambda}$ N Light Hypernuclei

E05-115 (2009) : HKS+HES, new Chicane beamline, Splitter Λ , Σ^0 , $^7_\Lambda$ He , $^{12}_\Lambda$ B, $^{52}_\Lambda$ V Light to medium-heavy Hypernuclei

Hypernuclear study with the (e,e'K⁺) reaction Initiated and established at JLab

$p(e,e'K^+)\Lambda, \Sigma^0$: Elementary Process

CH₂Target

T. Gogami et al. arXiv:1709.05682 Submitted to NIM-A

Absolute MM calibration

0.7 MeV (FWHM)

Counts/250keV

[(μ b/sr) / 0.25 Me\

$${}^{2}C(\pi^{+},K^{+}){}^{12}_{\Lambda}C$$
1.45 MeV (FWHM)
$${}^{12}_{\Lambda}C_{gs} energy$$
from emulsion

$^{12}\Lambda C$ emulsion data

Nuclear Physics A484 (1988) 520-524

Decay mode	Range of the hypernucleus (µm)	$\begin{array}{c} B_{\Lambda} \ (\text{as} \ {}^{12}_{\Lambda}\text{C}) \\ (\text{MeV}) \end{array}$	Ref.
1. ${}^{12}_{\Lambda}C \rightarrow \pi^- + {}^{12}N(g.s.)$	_	11.14±0.57	4)
2. ${}^{12}_{\Lambda}C \rightarrow \pi^- + p + {}^{4}He + {}^{7}Be$	3.0 ± 0.8	10.45 ± 0.33	3)
3. ${}^{12}_{\Lambda}C \rightarrow \pi^- + p + {}^{11}C$	4.3 ± 0.7	10.50 ± 0.47	3)
4.	3.5 ± 0.4	10.65 ± 0.33	1,2)
5.	3.5 ± 0.5	10.85 ± 0.44	1.2)
6.	3.4 ± 0.5	11.59 ± 0.45	^{1,2})
7.	3.2 ± 0.4	15.67 ± 0.50	1,2)

¹¹C (3/2-) : Ex = 4.8MeV

situation is not the case for π^- mesonic decay modes of ${}^{12}_{\Lambda}C$: $(\pi^{-12}N)$, $(\pi^-p^{11}C)$, $(\pi^-p^3He^4He^4He)$ and $(\pi^-p^4He^7Be)$. Every one of these decay topologies is easily confused with those of other hypernuclei.

The value obtained for B_A of ${}^{12}_A$ C, (10.80 ± 0.18) MeV

Statistical errors quoted, systematic errors (~0.04 MeV) reduced by measuring M_A in same emulsion stack.

Nuclear Physics A547 (1992) 369

12C 10.76 ± 0.19 Statistical error only Reference for all (π , K) B_A data: B_A (¹²_ACg.s.) = 10.76 +-0.19MeV Sys. Error ~ 0.04 MeV

Remove apparent A dependence

Shift ${}^{12}_{\Lambda}C_{gs} B_{\Lambda} by 0.54 MeV$

А

Charge Symmetry Breaking of the ΛN interaction

$^{7}_{\Lambda}$ He = 6 He + Λ

⁶He: 2n halo

E.Hiyama et al. PRC 80, 054321 (2009)

$^{7}_{\Lambda}$ He spectrum

Juric et al., Nucl. Phys. A484 (1988) 520

No B_{Λ} was obtained.

CSB interaction test in A=7 iso-triplet comparison

SNN et al., PRL 110, 012502 (2013)

Large CSB for A=4 hypernuclei

Decay π Spectroscopy of electro-produced hypernuclei

Study of ${}^4_{\Lambda}$ H ground state

Kaos at MAMI-C	C (Maii	٦Z	Univ.)	
日本物理学会誌	Beam			
BUTSURI 868/ 8 9 (10 176 9) ISSN 0029-0181	Energy		1.5 GeV	
間和30年 6月13日 第3 開始後的結理 平成25年 9月 5 日発行 第月5日発行 2013 VOL 68 NO.	Target			
9	Material		⁹ Be	
	Thickness	12	5 µm (54° tilted)	
	Kaos <u>(Kaon tagger)</u>			
	Cent.Mom +900 MeV/c		+900 MeV/c	
	Solid ang	le	~ 15 msr	
	K ⁺ survival r	atio	~ 40%	
	Spek-A, C (<u>Pion spectrometer</u>)			
	Cent.Mom		Spek-A = -115	
			$\frac{1}{125}$	
			MeV/c	
	Mom. res		∆p/p < 10 ⁻⁴	

Kaos at MAMI-C (Mainz Univ.)

π^- spectrum tagged by K⁺

Decay π vs Emulsion

P.Achenbach, ASTRA2017

outer error bars correlated from calibration

CSB for A=4 hypernuclei : **Future** Measurements

 Λ -Σ coupling is a key

A.Gal PLB744 (2015)352

Future Plan

Isospin dependence of the ANN interaction and Hyperon Puzzle

Two solar mass neutron stars

Hyperon Puzzle

Based on our knowledge on Baryonic Force: Hyperon should appear at high density ($\rho=2\sim3\rho_0$)

Too Soft EOS
Contradict
to
observation
2 M_{solar} Neutron Stars

Hyperon Puzzle : One of most important issues to be solved in nuclear physics

EOS of nuclear matter Microscopic nuclear force model @ $\rho_0 \rightarrow 2 \rho_0$

Higher density

3B/4BF play key roles

Promising scenario to solve Hyp. Puzzle Repulsive 3B/4B force in YN sector

Furumoto, Sakuragi, Yamamoto, PRC 79 (2009) 0011601(R)

AFDMC by Lonardoni et al.

ESC08c + 3B/4B RF : G-Matrix Calc. by Yamamoto, Rijken et al.

B_{Λ} study for wide A range

3B/4B effects for B_{\Lambda}

Special features of NS Mass No. $A \rightarrow \infty$ Extrapolate from various data A=1 (elementary) ELPH, A<12 MAMI, JLab, 12 A JLab Isospin $\frac{1}{\sqrt{Z-N}} = \varphi$ 🖈 Neutron star Asymmetry $^{7}_{\Lambda}$ He 0.1 ¶ 51,52V $^{12}_{\Lambda}\text{B}$ $^{28}_{\Lambda}Al$ 0.02 0.25 0.3 0.35

 $^{4}_{\Lambda}$ H

5 0.4 $A^{-2/3}$

No isospin dep. data for med-heavy Hyp.Nucl.

Phenomenological 3 BRF+AFDMC

$$\boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j = -3P^{\mathrm{T}=0} + \mathrm{C}_{\mathrm{T}} P^{\mathrm{T}=1}$$

AFDMC calculation

(F. Paderiva et al., arXiv:1506.04042v1 (2015))

T.Motoba et al., PTPsuppl. 185 (2010)224.

JLab E12-15-008 Grade A Approved

$nn\Lambda$ state exists?

$nn\Lambda$ state exists?

C. Rappold et al. (HypHI Collaboration), Phys. Rev. C 88, 041001(R) (2013). Talk by C.R. at EMMI2

Bound ³_An cannot be reproduced: E. Hiyama et al., Phys. Rev. C 89, 061302(R) (2014) A. Gal et al., Phys. Lett. B 736, 93–97 (2014)

 Resonance nn/1 may exist:

 I.R.Afnan et al., PRC 92, 054608 (2015)

 H. Kamada et al., EPJ Web Conf. 113, 07004 (2016)

Detectable both bound and resonance states

E12-17-003; JLab PAC45 approved with A⁻, high impact

Target cell of tritium gas

250 mm

Cell material: Al alloy (ASTM B209 AL 7075-T651)

Electron beam

z

40 TBq (0.1 g, 0.082 g/cm²) 1.4 MPa at 295K (0.3 MPa at 40K) 34 cc

 $\varphi = 12.7 \text{ mm}$

Dave Meekins (JLab, 2015).

Typical Checking Source for Detector Test : 3.7 MBq

JLab E12-17-003 An interaction study by inverstigation of Ann resonance

I.R.Afnan and B.F.Gibson, PRC 92, 054608 (2015)

Beamtime is now scheduled 24 Nov. – 17 Dec., 2018.

$^{3}_{\Lambda}H$ Puzzle

Lifetime measurement of $^{3}_{\Lambda}$ H

New direct lifetime measurements are planned: J-PARC: $\pi^- + {}^{3,4}\text{He} \rightarrow K^0 + {}^{3,4}_{\Lambda}\text{H}$ A.Feliciello @ ASTRA2017 ELPH Tohoku : $\gamma + {}^{3,4}\text{He} \rightarrow K^+ + {}^{3,4}_{\Lambda}\text{H}$

³_AH lifetime measurement at ELPH-Tohoku

$$\gamma + {}^{3,4}\text{He} \rightarrow {}^{3,4}_{\Lambda}\text{H} + K^+$$
$${}^{3}_{\Lambda}\text{H} \rightarrow X + \pi^-$$

Identify ${}^{3}_{\Lambda}$ H : Missing mass $t_{decay} = (t_{TDL} - ToF_{\pi}) - (t_{Tag} + ToF_{\gamma})$

PoP experiment for Λ lifetime measurement started in this June.

$^{3}_{\Lambda}$ H puzzle may not be lifetime problem

Decay Channel	# of events	B_Λ
π^{-} + ¹ H + ² H	24	0.23 ± 0.11
π^{-} + ³ He	58	0.06 ± 0.11
total	82	0.15 ± 0.08

AN interaction in the singlet state. Combining the result obtained in this experiment with the data compiled by Bohm et al. [2], reanalysed using the methods and selection criteria defined in the present work, the best estimate for the binding energy of ${}^{3}_{\Lambda}$ H is found to be $B_{\Lambda} = 0.13 \pm 0.05$ MeV.

M.Juric et al. NPB52 (1973) 1.

Future HY study with e beams JLab E12-15-008(e,e'K⁺) E12-17-003 (nnA)

MAMI-Mainz

Decay π Spectroscopy of electroproduced HY

 3 _AH Binding E.

Hypernuclei

Light

Study of ΛN through nnΛ (Start Nov. 2018)

First Iso-spin dependence of medium heavy HY w/ best resolution (Prepare for 2020 run)

ELPH-Tohoku

Elementary Strangeness photo-production

^{3,4}_AH lifetime (2019-2020 run)

Compare experimental results with Theoretical Predictions of Binding Energies and Cross Sections Deduce AN interaction including many-body forces

Solve Hyperon Puzzle, nn Λ Puzzle, ${}^{3}_{\Lambda}$ H Puzzle

Spectroscopy of Lambda hypernuclei with electron beams $\overrightarrow{P}_{A}Li^{-10}ABe^{-12}AB^{-16}AN \implies Abs. B_{A}$ determination sugg. 0.54MeV shift for all (π ,K)

Determination of $B_{\Lambda}({}^{7}_{\Lambda}He_{gs})$ triggered intensive study for A=4 iso-doublet hypernuclei (${}^{4}_{\Lambda}H$ and ${}^{4}_{\Lambda}He$) \bigwedge Mainz : Decay π spectroscopy J-PARC E13 : γ -ray spectroscopy

New experiment for $({}^{40}{}_{\Lambda}K$ and ${}^{48}{}_{\Lambda}K$) is under prep. to clarify the isospin dependence of 3/4BRF which is necessary to solve Hyperon puzzle.

nn Λ search (JLab E12-17-003) will start Nov. 2018.

Direct measurement of the ${}^{3}_{\Lambda}$ H lifetime is under prep. at ELPH. ${}^{3}_{\Lambda}$ H binding energy measurement is planned at MAMI.