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Prologue

Coalescence model for the production of light nuclei in high energy hadron-hadron
and hadron-nucleus collisions (cosmic rays) first introduced in the 1960s:

Hagedorn 1960,1962,1965; Butler & Pearson 1963; Schwarzschild & Zupančič 1963

Further development in the 1970s and 80s motivated by first experimental results
with heavy-ion collisions at the BEVALAC (Gutbrod et al. 1976):

Bond, Johansen, Koonin, Garpmann 1977; Mekjian 1977, 1978; Kapusta 1980,
Sato & Yazaki 1981; Remler 1981, Gyulassy, Frankel & Remler 1983;
Csernai & Kapusta 1986; Mrówczynski 1987; Dover et al. 1991

Long initial discussions about the interpretation of the “invariant coalescence
factor” BA defined by

EA
dNA

d3PA
= BA

(
Ep

dNp

d3Pp

)Z (
En

dNn

d3Pn

)N∣∣Pp=Pn=PA/A

.

(1) “momentum-space coalescence volume” (Butler & Pearson, Schwarzschild &
Zupančič, Gutbrod et al.);
(2) “inverse fireball volume” BA ∼ V A−1 (Bond et al, Mekjian).
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Prologue

The 1980s saw an increased focus on the phase-space and quantum mechanical
aspects of nuclei formation through coalescence. An important paper by
Danielewicz & Schuck 1992 used quantum kinetic theory to allow for scattering by
a 3rd body to account for energy conservation in deuteron formation. Scheibl &
Heinz 1999 used their work to derive a generalized Cooper-Frye formula for nuclear
cluster spectra from coalescence,

E
d3NA

d3P
=

2JA + 1

(2π)3

∫
Σf

P · d3σ(R) f Zp (R,P/A) f Nn (R,P/A) CA(R,P),

where the “quantum mechanical correction factor” CA(R,P), first introduced by
Hagedorn 1960, accounts for the suppression of the coalescence probability in
small or rapidly expanding fireballs where the cluster wave function may not fit
inside the “homogeneity volume” of nucleons with similar momenta that
contribute to the coalescence.

A connection between deuteron coalescence and femtoscopic 2-particle correlations
(intensity interferometry) was first noted in Mrówczynski 1993.
Working it out in detail in a semi-realistically parametrized expanding fireball
model, Scheibl & Heinz 1999 found the following main results:
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Main results: 1. The quantum mechanical correction factor
The quantum mechanical correction factor (approximately independent of position)
averaged over the freeze-out surface is given by

〈CA〉 (P) ≡ 〈CA(R,P)〉Σ =

∫
Σ
P·d3σ(R) f A−Z

n (R,P/A) f Zp (R,P/A) CA(R,P)∫
Σ
P·d3σ(R) f A−Z

n (R,P/A) f Zp (R,P/A)
,

≈ e−B/T
/[(

1 +
2

3

r 2
A,rms

R2
⊥(M⊥/A)

)(
1 +

2

3

r 2
A,rms

R2
‖(M⊥/A)

)1/2]
B = MA − Am < 0 is binding energy of the nuclear cluster; M⊥/A ≈ m⊥ is transverse
mass of the coalescing nucleons. CA(R,P) obtained by folding the internal Wigner
density of the cluster with the phase-space densities of the coalescing nucleons; for
example, for deuterons

Cd(R,P) =

∫
d3q d3r

(2π)3
D(r , q)

fp(R+,P+) fn(R−,P−)

fp(R,P/2) fn(R,P/2)

≈
∫

d3r
∣∣φd(r)

∣∣2 fp(R+,P/2) fn(R−,P/2)

fp(R,P/2) fn(R,P/2)

where D(r , q) = 8 exp(−r 2/d2−q2d2), with d =
√

8/3rd,rms = 3.2 fm, is the deuteron

internal Wigner density in its rest frame, R0
± = R0

d ± ud · r , R±= R ± 1
2

(
r + ud ·r

1+u0
d
ud

)
,

ud = P/md , and similarly for P±.
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Main results: 2. The invariant coalescence factor
By dividing the invariant cluster spectrum by the appropriate powers of the invariant
nucleon spectra one obtains

BA(P) =
2JA+1

2A
〈CA〉

M⊥Veff(A,M⊥)

m⊥Veff(1,m⊥)

(
(2π)3

m⊥Veff(1,m⊥)

)A−1

e(M⊥−Am)(1/T∗p −1/T∗A )

where T ∗p , T
∗
A are the inverse slope parameters (“effective temperatures”) of the

nucleon and cluster spectra, and the effective volume Veff is given by

Veff(A,M⊥) =
Veff(1,m⊥)

A3/2
=

(
2π

A

)3/2

Vhom(m⊥) =⇒ M⊥Veff(A,M⊥)

m⊥Veff(1,m⊥)
= A3/2

in terms of the homogeneity volume Vhom(m⊥) = R2
⊥(m⊥)R‖(m⊥) where R⊥(m⊥)

and R‖(m⊥) are the transverse (“sideward”) and longitudinal HBT radii measured for
particle pairs with transverse pair mass m⊥:

R⊥(m⊥) =
∆ρ√

1 + (m⊥/T )η2
f

, R‖(m⊥) =
τ0 ∆η√

1 + (m⊥/T )(∆η)2
.

Here ∆ρ, ∆η are the geometric (Gaussian) fireball widths in transverse (radial) and
longitudinal (space-time rapidity) directions, τ0 is the nucleon kinetic freeze-out time,
and ηf and ∆η = (τ0∆η)/τ0 are the transverse and longitudinal flow velocity gradients.

Ulrich Heinz (Ohio State) Coalescence, flow and HBT Turin, 11/7/2017 7 / 20



Prologue Main results The expanding fireball model Calculating the quantum mechanical correction factor Summary

Coalescence, flow, HBT, and all that . . .

1 Prologue

2 Main results

3 The expanding fireball model

4 Calculating the quantum mechanical correction factor

5 Summary

Ulrich Heinz (Ohio State) Coalescence, flow and HBT Turin, 11/7/2017 8 / 20



Prologue Main results The expanding fireball model Calculating the quantum mechanical correction factor Summary

The model emission function (Csörgő and Lörstad 1996)

Assumption: simultaneous kinetic freeze-out of pions, kaons, and nucleons and
coalescence of nuclei on a common “last scattering surface” Σf characterized by
a position-dependent freeze-out time tf(x).
Coordinate system: Milne (τ, η) and transverse polar (ρ, φ) coordinates:

Rµ = (τ cosh η, ρ cosφ, ρ sinφ, τ sinh η)
Additional simplifications:
1. azimuthal symmetry (b = 0 collisions);
2. boost-invariant longitudinal flow rapidity ηl(τ, ρ, η) = η (Bjorken scaling);
3. linear transverse flow rapidity profile η⊥(τ, ρ, η) = ηf

ρ
∆ρ ;

uµ(R) = cosh η⊥(cosh η, tanh η⊥ cosφ, tanh η⊥ sinφ, sinh η);
4. sudden freeze-out at constant longitudinal proper time τ0 and temperature T :

P · d3σ(R) = τ0m⊥ cosh(η−Y ) ρ dρ dφ dη;
5. Boltzmann approximation for nucleons and nuclei:

fi (R,P) = eµi/T e−P·u(R)/T H(R), i = p, n;

H(R) = H(η, ρ) = exp

(
− ρ2

2(∆ρ)2
− η2

2(∆η)2

)
.
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Cluster spectra: thermal emission vs. coalescence
Thermal cluster emission: µA = Zµp + (A−Z )µn

E
d3NA

d3P
=

2JA + 1

(2π)3
eµA/T

∫
Σf

P · d3σ(R) e−P·u(R)/T H(R)

Classical coalescence (pointlike nucleons, ignoring cluster binding energy):

E
d3NA

d3P
=

2JA + 1

(2π)3
eµA/T

∫
Σf

P · d3σ(R) e−P·u(R)/T
(
H(R)

)A
Quantum coalescence:

E
d3NA

d3P
=

2JA + 1

(2π)3
eµA/T

∫
Σf

P · d3σ(R) e−P·u(R)/T
(
H(R)

)A CA(R,P)

≈ 2JA + 1

(2π)3
eµA/T 〈CA〉(P)

∫
Σf

P · d3σ(R) e−P·u(R)/T
(
H(R)

)A
For freeze-out at constant energy density, temperature and chemical potential:

H(R) = const. = 1 =
(
H(R)

)A
=⇒ thermal emission and classical

coalescence give identical results while quantum coalescence gives slightly
(15-20%) smaller yields.
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Gaussian H(R): thermal cluster emission spectrum

Using saddle point integration one obtains for the Gaussian profile function H(R)
(Scheibl & Heinz 1999)

E
d3NA

d3P
=

2JA + 1

(2π)
e(µA−M)/TM⊥Veff(1,M⊥) exp

(
−M⊥−M

T ∗A
− Y 2

2(∆η)2

)
=

2JA + 1

(2π)3/2
e(µA−M)/TM⊥Vhom(M⊥) exp

(
−M⊥−M

T ∗A
− Y 2

2(∆η)2

)
with an inverse slope parameter (“effective temperature”) that increases linearly
with the cluster mass:

T ∗A = T + M η2
f .
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Gaussian H(R): spectrum from classical coalescence

Using saddle point integration one obtains for the Gaussian profile function H(R)

E
d3NA

d3P
=

2JA + 1

(2π)
e(µA−Am)/TM⊥Veff(A,M⊥) exp

(
−M⊥−Am

T ∗A
− AY 2

2(∆η)2

)
=

2JA + 1

(2π)3/2
e(µA−Am)/TM⊥

Vhom(m⊥)

A3/2
exp

(
−M⊥−Am

T ∗A
− AY 2

2(∆η)2

)
where M⊥ ≡

√
(Am)2 + P2

⊥, with an inverse slope parameter (“effective
temperature”) independent of cluster size:

T ∗A = T +
Am

A
η2
f = T + m η2

f = T ∗p .
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Gaussian H(R): spectrum from quantum coalescence

Using saddle point integration one obtains for the Gaussian profile function H(R)

E
d3NA

d3P
=

2JA + 1

(2π)
e(µA−Am)/T 〈CA〉(P)M⊥Veff(A,M⊥) exp

(
−M⊥−Am

T ∗A
− AY 2

2(∆η)2

)
=

2JA + 1

(2π)3/2
e(µA−Am)/T 〈CA〉(P)M⊥

Vhom(m⊥)

A3/2
exp

(
−M⊥−Am

T ∗A
− AY 2

2(∆η)2

)
where M⊥ ≡

√
(Am)2 + P2

⊥, with an inverse slope parameter (“effective
temperature”) independent of cluster size:

T ∗A = T +
Am

A
η2
f = T + m η2

f = T ∗p .

Clearly, this last feature is incompatible with experimental observations which

show clusters flowing as if they were thermally emitted. This problem does not

persist for a constant density profile H(R) = 1.
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Cluster spectra from wave function overlap

Danielewicz and Schuck 1992:

In the cluster rest frame, coalescence is a non-relativistic process. Starting from
the square of the overlap matrix element between the deuteron wave function and
those of a proton and a neutron and rewriting it in terms of density matrices and
ultimately Wigner densities, Danielewicz and Schuck showed that in the deuteron
rest frame the deuteron momentum spectrum can be calculated as

dNd

d3Pd
=
−3i

(2π)3

∫
d4rd d

3r

∫
d4p1

(2π)4

d3p2

(2π)3
(2π)4δ4(Pd−p∗1−p2)

×D
(
r , p1−p2

2

) [
Σ<p (p∗1 , r+) f Wn (p2, r−) + Σ<n (p∗1 , r+) f Wp (p2, r−)

]
,

where p∗ denotes an off-shell momentum, due to a preceding collision of the

off-shell particle with a third body. The energy-momentum conserving δ-function

can only be satisfied if either the neutron or the proton is off-shell.
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Cluster spectra from wave function overlap
The off-shell nucleon self energy is given by

−iΣ<N (p∗, x) =
∑
j

∫
d3q

(2π)3

d3p′

(2π)3

d3q′

(2π)3
(2π)4δ4(p∗+q−p′−q′)

×|MNj→Nj |2f WN (p′, x) f Wj (q′, x)
(
1± f Wj (q, x)

)
≈ fN(p∗, x)

∑
j

∫
d3q

(2π)3
fj(q, x)

×
[∫ d3p′

(2π)3

d3q′

(2π)3
(2π)4δ4(p∗+q−p′−q′)|MNj→Nj |2

(
1± fj(q

′, x)
)]

=
fN(p∗, x)

τNscatt(p, x)
.

Deuterons have twice the scattering rate of their constituent nucleons. Since any

scattering is likely to break up the deuteron, the integration over td = r0
d in the

deuteron rest frame should only go from tf− 1
2τ

N
scatt to tf . Assuming the

scattering time to be sufficiently short to neglect any change in the distribution

functions during this time interval the factors of τNscatt cancel, and . . .
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Cluster spectra from wave function overlap

. . . and we get

dNd

d3Pd
=

3

(2π)3

∫
d3rd

∫
d3r d3q

(2π)3
D(r , q)fp(q+, r+) fn(q∗−; r−)

where

qµ+ =
(√

m2 + q2, q
)
, q∗µ− =

(
Md −

√
m2 + q2, −q

)
.

Lorentz transforming this to the global frame by Lorentz-boosting the rest-frame
positions and momenta with the four-velocity of the deuteron, we can use
Edd

3rd = Pd · d3σ(Rd) and write this as

Ed
dNd

d3Pd
=

3

(2π)3

∫
Σf

Pd · d3σ(Rd) fp(Rd ,Pd/2) fn(Rd ,Pd/2) Cd(Rd ,Pd)

which defines the previously listed quantum mechanical correction factor

Cd(Rd ,Pd).
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The quantum mechanical correction factor
Some typical values for the quantum mechanical correction factor for deuterons from the
Gaussian emission function model are listed in the following Table:

In view of their minor numerical effects, we refrain from
giving a detailed account of the technical implementation of
these restrictions into the numerical evaluation of Eq.~4.6!,
referring instead to Ref.@45#. In practice, the following ana-
lytical estimates turn out to be sufficiently accurate even on a
quantitative level.

C. Analytic approximation of the correction factor

Since the measured deuteron momentum spectra do not
contain information on the point of deuteron formation, the
relevant quantity is theaveragecorrection factor

^Cd&~Pd!5

E Pd•d3s~Rd! f 2~Rd ,Pd/2!Cd~Rd ,Pd!

E Pd•d3s~Rd! f 2~Rd ,Pd/2!

.

~4.8!

We will first calculateCd(Rd ,Pd) in analytic approximation
for a special combination ofRd and Pd @given by Eq.~4.9!
below# and then argue that the result, calledC d

0 , is actually a
very good approximation of̂Cd&(Pd). Numerical studies
@45# confirm the validity of these arguments.

We first concentrate on deuterons with zero transverse
momentum which are at rest in the fluid cell where they are
created, i.e., whose four-velocitybm agrees with the flow
four-velocity at the production point,b5u(Rd):

bm5
1

td
~Rd

0 ,0,0,Rdz!. ~4.9!

In the d frame the fireball nearRd can then be described
nonrelativistically as long as the longitudinal flow velocity
gradients are sufficiently small. As long asd,td the nonrel-
ativistic approximation is very good in the relevant region
r z&d whereD is nonzero. Sincebx5by50 the Lorentz
transformations~3.3! and ~4.3! do not mix longitudinal and
transverse directions, and the integrand for the coalescence
factor has the same axial symmetry as the fireball. Then

h6'hd6
r z

2td
, ~4.10a!

r6
2 5rd

21
r x

21r y
2

4
6~r xRdx1r yRdy!, ~4.10b!

t6'td2
r z

2

8td
~4.10c!

after a nonrelativistic expansion of Eq.~4.2!. Further, the
flow u6 follows from u(R6) by a simple shift in the longi-
tudinal rapidity:

Lmnun~R!

'S 11
~h2Yd!2

2
1

h f
2r2

2~Dr!2 ,
h fRx

Dr
,
h fRy

Dr
,h2YdD ,

where we have already used the saddle-point approximation
~2.13!. For the given values ofd andmT the value ofdeff in

Eq. ~4.6! depends only weakly onu6
0 . Sinceu6

0 (r)*1 for

b5u(Rd) and small uru, we usedeff
2 'd211/mT and Beff

50, or deff
2 'd2 and Beff'B, respectively, depending on

whether or not energy conservation is taken into account.
With these approximations Eq.~4.6! turns into a product of
Gaussian integrals inr x , r y , andr z , with the result

C d
05

1

g'
2 g i

S d

deff
D 3

expS Beff

T D , ~4.11a!

g'5A11S d

2R'~m! D
2

2S h f

2TDr D 2

, ~4.11b!

g i5A11S d

2Ri~m! D
2

2S 1

2Ttd
D 2

. ~4.11c!

For the source parameters given in Sec. II F the last terms
under the square root ing' ,g i are negligible. They originate
from the coupling termq•(u12u2) in Eq. ~4.5! and the
resulting termuu12u2u2 in Eq. ~4.6!. They would thus be
absent if we had started from the approximation~3.21! in-
stead of Eq.~3.20!. The smallness of these terms is a good
check of the accuracy of Eq.~3.21!.

The last two factors in Eq.~4.11a! deviate from unity by
less than 2% for temperaturesT between 100 and 170 MeV
if energy conservation is properly accounted for; if not, the
deviations have the opposite sign, but remain below 5%.

Given the high accuracy of Eq.~3.21!, we can use it for a
check of the sensitivity ofC d

0 on the choice of the internal
deuteron wave function. A numerical integration of Eq.
~3.21! with the Hulthen wave function~3.4a! yields values
for C d

0 which are somewhat larger than those for harmonic
oscillator wave functions. For the source parameters given in
Sec. II F we obtain for the harmonic oscillator wave function
C d

050.8120.05
10.03 and for the Hulthen formC d

050.8420.04
10.02

@where the upper and lower limits indicate the effects from
the estimated uncertainties in (T,h f)#. The numbers in Table
I show that the differences are sensitive mainly to the trans-
verse and longitudinal flow gradients; they remain on the
level of a few percent for weakly expanding sources~left-
most column!, become stronger for more rapidly expanding
sources~rightmost column!, and can reach a factor of 2 or 3
in systems with very small interaction volume (pp colli-
sions!.

The origin of the difference is readily understood: while
both wave functions provide the same rms radius, the maxi-

TABLE I. The quantum-mechanical correction factorC d
0 for

Hulthen and harmonic oscillator wave functions calculated with Eq.
~3.21!, for different fireball parameters at nucleon freeze-out~for
details see text!.

t0 @ fm/c# 9.0 6.0

T @MeV# 168 130 100 168 130 100
h f 0.28 0.35 0.43 0.28 0.35 0.43

Hulthen 0.86 0.84 0.80 0.80 0.78 0.74
harm. osc. 0.84 0.81 0.76 0.76 0.72 0.66

PRC 59 1595COALESCENCE AND FLOW IN ULTRARELATIVISTIC . . .

Note that the more realistic Hulthen wave function, which (in spite of the same rrms)

peaks at a smaller value of r than the Gaussian, has better overlap with the

“homogeneity factor” f (R+,P/2)f (R−,P/2)/f 2(R,P/2) than the Gaussian one,

because the latter peaks strongly at r = 0.
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Summary (in the form of qualitative predictions):

For kinetic freeze-out at constant temperature, chemical potential and thus
constant particle and energy density, classical coalescence produces the same
particle yields and spectra as the thermal model, independent of the value of
the kinetic freeze-out temperature. Just as the chemical temperature extracted
from elementary hadron yield ratios provides no information about their kinetic
freeze-out temperature, the chemical temperature extracted from particle ratios
involving nuclear clusters provides no information about the temperature at which
the coalescence process took place.

Quantum mechanical effects, which scale with the ratio of the intrinsic cluster
volume divided by the homogeneity volume of the coalescing nucleons (which can
be extracted from femtoscopic measurements), suppress the cluster yields by
15-25% in collisions between large nuclei and by larger factors in smaller and more
rapidly expanding systems. Binding energy correction effects are typically small.

The invariant coalescence factors BA are proportional to A1/3/
(
m⊥Vhom(m⊥)

)A−1

and thus increase with m⊥ (due to the corresponding decrease of the HBT
homogeneity volume) and decrease with

√
s (due to the corresponding increase of

the HBT homogeneity volume), qualitatively consistent with observations.
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