Kenji Morita

2nd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

Theory view on Hyperon-Hyperon Interaction from Correlations

Kenji Morita (University of Wroclaw / RIKEN)

 Ref: KM, T.Furumoto, A.Ohnishi, PRC91, 024916 (`15).
 ΛΛ

 KM, A.Ohnishi, F.Etminan, T.Hatsuda, PRC94, 031901(R) (`16).
 pΩ

 A. Ohnishi, KM, K.Miyahara, T.Hyodo, NPA954, 294 (`16).
 ΛΛ, Kbar N

 EXHIC Collaboration, Prog. Part. Nucl. Phys.95, 279 ('17).
 Review

 T.Hatsuda, KM, A.Ohnishi, K.Sasaki, NPA967, 856 (`17).
 pΞ

Outline

- **1.** Introduction
- 2. Correlation from Final State Interaction in Heavy-Ion Collisions
- **3.** Applications : Dibaryon Candidate From S=-6 to -2
 - combined w/ Lattice QCD@(almost) phys.point
 - 1. ΩΩ
 - **2.** *p*Ω
 - **3.** *p*Ξ

4. Concluding Remarks

Hadron-Hadron Interaction

Testing Ground for QCD at Low Energy

- Foundation of Nuclear Physics
- Chiral Symmetry

8 Nov, 2017

- Baseline for many-body physics Confinement
 - Exotic hadrons / finite T, ρ

Heavy Ion Collisions as Hyperon Factory

2nd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

How HIC Can Tell Us Interaction?

HIC at Relativistic Energies@RHIC, LHC

Production of Quark-Gluon Plasma

Crossover Transition Into Hadron Particle Abundance – Thermal Eq.

Incl. Rare Particles

Measuring Pair Correlation \rightarrow Constrain Pairwise Interaction $C_{AB}(Q) = \frac{N_{AB}^{\text{pair}}(Q)}{N_A N_B(Q)} = \begin{cases} 1 & \text{No Correlation} \\ \text{others Interaction} \\ \text{Interference etc} \end{cases}$

2nd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

Counting Correlated Pairs

Freeze-out:

- Independent (chaotic) production from thermal source :
 St(x, k) Sp(x, kp)
 - $S_A(x_1, \boldsymbol{k_1}) S_B(x_2, \boldsymbol{k_2})$
- dilute after FO pairwise interaction only
- State of pairs evaluated in the pair-rest frame * k₁ + k₂ = 0

Scattering w.f. $\psi(Q^*, r^*)$

2nd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

Theoretical Description

Correlation from FSI

$$C_{AB}(Q) - 1 = \frac{4\pi}{(2\pi R^2)^3} \int dr r^2 S^{\text{rel}}(r) [|\chi_Q(r)|^2 - |j_0(Qr)|^2]$$

Lednicky+ '82

Asymptotic form $\sin(Qr + \delta)/(Qr)$

 $(\pi R^2)^{3/2} \exp\left(-\frac{r^2}{4R^2}\right)$ Static/Spherical

Shape-independent approx.

$$Q \cot \delta = -\frac{1}{a_0} + \frac{1}{2} r_{\text{eff}} Q^2$$

Small Q: Sensitive to S-wave scattering length a₀ and less sensitive to effective range r_{eff}

Approximately scale with R/a_o and QR

Holds in the presence of Coulomb

Correlation from FSI

Correlation from FSI

8 Nov, 2017

Measuring C(Q) for different system size helps to disentangle the FSI-induced correlation from others

Application to Dibaryon Candidates

w/ inputs from Lattice QCD at (almost) physical point

Details will be given by T.Inoue and K.Sasaki on Thursday

The Most Strange System: ΩΩ (S=-6) IS₀ bound state from Lattice QCD

150 t/a=18 17 -----100 16 50 V(r) [MeV] 0 -50 -100 0.5 1.5 2.5 0 1 2 3 r [fm]

S.Gongyo et al., (HAL QCD), 1709.00654

 m_{π} =146MeV, m_{Ω} =1713MeV

+Coulomb repulsion

t/a	a _o [fm]	r _{eff} [fm]	E _B [MeV]		
16	65.3	1.29	0.1		
17	17.6	1.23	0.5		
18	11.7	1.21	1.0		
1					
Unitary regime in typical					

source size for HIC

$\Omega\Omega$ Correlation : elements

Wave function

$$|\varphi_{\Omega\Omega}^{\text{spin-averaged}}(\boldsymbol{q^*}, \boldsymbol{r^*})|^2 = \frac{1}{16}|\varphi(\boldsymbol{J}=\boldsymbol{0})|^2 + \sum_{J=1}^3 \frac{2J+1}{16}|\varphi(J)|^2$$

FSI+Coulomb+symmetrization

Coulomb+(a)symmetrization

Boost-invariant, azimuthal symmetric transverse flow

Fit to p_T spectrum with T=164 MeV

ΩΩ Correlation@LHC

System is too large Further suppressed by the spin degeneracy factor 1/16

ΩΩ Correlation@LHC

System is too large Further suppressed by the spin degeneracy factor 1/16

ΩΩ Correlation@LHC

System is too large Further suppressed by the spin degeneracy factor 1/16

ΩΩ Correlation@LHC

System is too large Further suppressed by the spin degeneracy factor 1/16

Moderate enhancement from Coulomb+HBT case

ΩΩ Correlation@LHC

System is too large Further suppressed by the spin degeneracy factor 1/16

Moderate enhancement from Coulomb+HBT case

Strong enhancement from Coulomb+HBT case

ΩΩ Correlation@LHCThe Small-Large Ratio C_{SI}(Q)

Response to system size change

QS (HBT) Correlation suppresses the ratio

Nevertheless FSI dominates at low Q

ΩΩ Correlation: Statistics? # of pair A(Q)

S=-3: pΩ Correlation @almost phys.point

$p\Omega$ Interaction (${}^{5}S_{2}$)

NΩ potential (fitted to Lattice data) : bound state exists

+Coulomb attraction

t/a	a _o [fm]	r _{eff} [fm]	E _B [MeV]
11	3.77	1.37	1.6
12	3.89	1.38	1.5
13	3.47	1.37	2.0

Bound state regime for Heavy Ion Collisions

Close to unitary for smaller system

T.Iritani et al. (HAL QCD)

pΩ Correlation

$$|\varphi_{p\Omega}^{\text{spin-averaged}}(\boldsymbol{q}^{*},\boldsymbol{r}^{*})|^{2} = \frac{3}{8}|\varphi(^{3}S_{1})|^{2} + \frac{5}{8}|\varphi(^{5}S_{2})|^{2}$$

$$\square$$
Coupled to $\Lambda \Xi$ (2430) and $\Sigma \Xi$ (2507)
$$\square$$
Absorption of S-wave component
$$V_{J=1}(r) = -i\theta(r_{0} - r)V_{0}$$

$$\square$$

$$\square$$

$$\square$$

Bound state regime: Suppression of C_{SL}(Q) Below unity At low Q

See Talk by J.Chen on Monday

Gauss*(Yukawa)², t=9 4 10 11 12 2 13 w/ Coulomb $C_{SL}(Q) = C_{S}(Q)/Q$ 14 1 0.8 @Phys. Point 0.6 100 20 40 80 120 140 0 60 Q [MeV/c]

S=-2: pE Correlation @(almost)Phys. Point

2nd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

8 Nov, 2017 27

$p \ge \text{Interaction} ({}^{1}S_{0}, {}^{3}S_{1})$

NE potential (fitted to Lattice data)

+Coulomb attraction						
	Effective ¹ S ₀		³ S ₁			
t/a	a _o [fm]	r _{eff} [fm]	a _o [fm]	r _{eff} [fm]		
9	-22.66	2.46	-0.60	4.53		
10	-19.86	2.30	-0.73	4.17		
11	-23.95	2.30	-0.80	4.17		
12	-12.39	2.40	-0.61	5.30		

 $^{1}S_{o}$ channel (coupling to $\Sigma\Sigma$ incorpolated) dominates Close to unitary for HIC source

K.Sasaki et al. (HAL QCD)

pE⁻ Correlation at Physical Point

$$\begin{split} |\psi_{p\Xi^{-}}|^{2} &= \frac{1}{2} |\psi_{p\Xi^{-}}^{I=0}|^{2} + \frac{1}{2} |\psi_{p\Xi^{-}}^{I=1}|^{2} \\ &= \frac{1}{8} |\psi_{p\Xi^{-}}^{I=0}({}^{1}S_{0})|^{2} + \frac{3}{8} |\psi_{p\Xi^{-}}^{I=0}({}^{3}S_{1})|^{2} + \frac{1}{2} |\psi_{p\Xi^{-}}^{I=1}|^{2} \end{split}$$

Unitary regime: Notable enhancement by FSI

2nd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

Concluding Remarks

- Correlation measurement in HIC can constrain low energy scattering param.
 - New opportunity for multistrange systems
 - FSI contribution is sensitive to system size : Comparing small and large systems via C_{SL}(Q)
 - Different systems useful for disentangle other correlation origins
- Indirect search for dibaryon states
 - $\Omega \Omega$: Unitary regime, but statistically difficult
 - *p*Ω : Bound regime suppression of C_{SL}(Q)
 - p =: Unitary regime enhancement of C_{SL}(Q)

Backup

🗾 Fix τ

 $\tau \sim R_{long} \sim < N_{ch} > 1/3$

Ω freeze-out from phase boundary due to small cross section

Hybrid model: Zhu et al., PRC'15, Takeuchi et al., PRC'15

Parameters

Centrality	0-10%	10-20%	20-40%	40-60%	60-80%
τ _o [fm]	10.0	7.9	6.75	4.89	2.0
R [fm]	5.18	4.74	3.8	2.55	1.6
α	0.38	0.38	0.38	0.38	0.37

 $N\Omega$ potential (${}^{5}S_{2}$) : motivated by LQCD

$$V(r) = b_1 e^{-b_2 r^2} + b_3 (1 - e^{-b_4 r^2})^n (e^{-b_5 r}/r)^2$$

Caveat : data obtained from heavy quark mass (Etminan+ `14) Following calculations use the physical baryon masses

2nd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

Counting Correlated Pairs

Distant pairs: Uncorrelated because Distance < int. range (~ System size)

Hadron Freezeout

Close pairs: Correlated through FSI Distance < int. range

FSI : ψ(Q*, r*) Input from V(r) (phenomenological / Lattice)

Hadron Freezeout

Counting Correlated Pairs

Close but large Q pairs: Correlated through FSI Distance < int. range

Oscillating $|\psi(Q^*, r^*)|^2$ washes out correlation

 $C(Q) \propto \int_{r} S(r) |\chi_Q(r)|^2 - |j_0(Qr)|^2$

Hadron Freezeout

Counting Correlated Pairs

Close and small Q pairs: Correlated through FSI Distance < int. range

> $|\psi(Q^*, r^*)|^2$ leads enhance or reduction of # of pairs

Hadron Freezeout

System Size?

Small System: Most of observed pairs with small Q correlated

Large System: <u>Less pairs</u> coming from close distance

Important Remark: Coulomb FSI for charged pairs!

Hadron Freezeout Conclusion : measure small Q pairs coming from small region!

Collective Expansion: More particles produced along the expanding direction

Emission region deformed to smaller one

Faster pairs more concentrated

Hadron Freezeout

*p*Ω Correlation : Strong int. Only

Small-Large Ratio C_{SL}(Q)

Quantum Statistics (HBT/GGLP)

Comparison with STAR data (RHIC)

Koonin-Pratt Formula In pair-rest frame $P = (M, \mathbf{0})$ $x = x_A - x_B = (t, r)$

Relative emission function : emission probability for pairs with distance r

$$S^{\text{rel}}(\boldsymbol{r}) = \frac{\int dt \int d^4 X S_A(X + E_B^* x/M, \boldsymbol{k}_A) S_B(X - E_A^* x/M, \boldsymbol{k}_B)}{\int d^4 x_1 S_A(x_A, \boldsymbol{k}_A) \int d^4 x_B S_B(x_B, \boldsymbol{k}_B)}$$
$$C_{AB}(\boldsymbol{Q}, \boldsymbol{P}) = \int d^3 \boldsymbol{r} S^{\text{rel}}(\boldsymbol{r}) |\psi_{AB}^{(-)}(\boldsymbol{r}, \boldsymbol{Q})|^2$$

2nd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

p

р

D

Coulomb dominated

 $C(Q) - 1 \propto \int dr r^2 e^{-r^2/(2\rho^2)} [\chi_Q^2 - j_0^2(Qr)]$

Strong int. dominated

Large R : many pairs are from longdistance - Coulomb-dominated

Difference informs about Strong int.

2nd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

Expanding System : no difference

Feed-Down Contribution

Short-lived (Σ^* , N* etc) : absorbed into R $\Xi \rightarrow \Lambda + \pi$: (partly) subtracted

Final State Interaction

$$\rightarrow e^{iQ\cdot r} + \frac{f_{\ell=0}^*(Q)}{r} e^{-iQr} (r \rightarrow \infty) \quad \text{Asymptotic form}$$

Correlation vs Wave function: Interaction

$$C_{AB}(Q) - 1 = \frac{4\pi}{(2\pi R^2)^3} \int drr^2 S^{\text{rel}}(r) [|\chi_Q(r)|^2 - |j_0(Qr)|^2]$$

$$(\pi R^2)^{3/2} \exp\left(-\frac{r^2}{4R^2}\right) \frac{1}{Source}$$

$$V_1 : \text{Weak attraction}$$

$$V_1 : \text{Weak attraction}$$

$$V_1 : \text{Stronger attraction}$$

$$(\text{close to unitary limit})$$

$$V_{III}: \frac{1}{Strong attraction}$$

$$(w/ \text{ bound state})$$

Correlation vs Wave function: Q

$$C_{AB}(Q) - 1 = \frac{4\pi}{(2\pi R^2)^3} \int dr r^2 S^{\text{rel}}(r) [|\chi_Q(r)|^2 - |j_0(Qr)|^2]$$

$$(\pi R^2)^{3/2} \exp\left(-\frac{r^2}{4R^2}\right) \begin{array}{c} \text{Static/Spherical}\\ \text{Source} \end{array}$$

$$V_1 : \text{Weak attraction}\\ V_1 : \text{Weak attraction}\\ \text{(close to unitary limit)}\\ \text{V}_{\text{III}} \\ \text{Strong attraction}\\ \text{(w/ bound state)}\\ \text{Difference in Small Q}\\ \end{array}$$

Correlation vs Wave function: Size

$$C_{AB}(Q) - 1 = \frac{4\pi}{(2\pi R^2)^3} \int dr r^2 S^{\text{rel}}(r) [|\chi_Q(r)|^2 - |j_0(Qr)|^2]$$

$$(\pi R^2)^{3/2} \exp\left(-\frac{r^2}{4R^2}\right) \text{Static/Spherical}$$

$$(\pi R^2)^{3/2} \exp\left(-\frac{r^2}{4R^2}\right) \text{Static/Spherical}$$

$$R = 2 \text{fm}, \forall_{||} - - R = 5 \text{fm}, \forall_{||} - -$$

Spin-2 *N*Ω Dibaryon?

S=-3 States

