

2nd EMMI Workshop: Anti-matter, hyper-matter and exotica production at the LHC

Wrap-up of Monday November 6th

... what to bring home?

Stefano Piano

1/N_{ev} d²N/(dp_Tdy) (GeV/*c*)⁻¹

10

10

10

10

 10^{-6}

ALI-PREL-130488

A Large Ion Collider Experiment

DEUTERON p_{T} SPECTRA

- Spectra become harder with increasing multiplicity in Pb-Pb and show clear radial flow
- The Blast-Wave fits describe the data well in \geq p-Pb and Pb-Pb
- > pp and p-Pb spectrum show no sign of radial flow

ALICE-PUBLIC-2017-006

alala alala

2

3

pp

2nd EMMI Workshop: Anti-matter, hyper-matter and exotica production at LHC | 06-11-2017 | Stefano Piano

5

= 5.02 TeV

60-70% (x4)

ons, Pb-Pb \s_{NN}

0-5% (x512)

10-20% (x128

30-40% (x32)

50-60% (x8)

Individual fi

70-80% (x2)

|y| < 0.5

3-HELIUM

d/d

р/<u>р</u>

0.5

ALI-PREL-136458

0.5

1.5 2

2.5 3 0.5

1 1.5

p_ (GeV/c)

2 2.5

0.5

ANTI-NUCLEI PRODUCTION

- Anti-nuclei / nuclei ratios are consistent with unity (similar to other light flavour species)
- Ratios exhibit constant behavior as a function of p_T and centrality
- Ratios are compatible with unity, in agreement with the coalescence and thermal model expectations
- Also in pp multiplicity intervals, anti-deuterons and deuterons are produced equally

2nd EMMI Workshop: Anti-matter, hyper-matter and exotica production at LHC | 06-11-2017 | Stefano Piano

15 2 25

3 0.5

ALICE Preliminary pp, $\iota s = 7 \text{ TeV}$ V0M Multiplicity Classes

• I+II

• 111

IV+V
VI+VII

● VIII+IX+X

(ANTI-)HYPERTRITON YIELDS

COALESCENCE MODEL: $\bar{p}/p \sim \bar{\Lambda}/\Lambda \sim 1$

THERMAL MODEL FITS

Different models describe particle yields including light (hyper-)nuclei well with T_{ch} of about 156 MeV

Including nuclei in the fit causes no significant change in $T_{\rm ch}$

2nd EMMI Workshop: Anti-matter, hyper-matter and exotica production at LHC | 06-11-2017 | Stefano Piano

HYPERTRITON LIFETIME DETERMINATION

Direct decay time measurement is difficult (~ps), but the excellent determination of primary and decay vertex allows measurement of lifetime via:

$$N(t) = N(0) e^{-\frac{t}{4}}$$

where $t = L/(\beta \gamma c)$ and $\beta \gamma c = p/m$ with *m* the hypertriton mass, *p* the total momentum and *L* the decay length

Jinhui Chen

H-dibaryon Invariant Mass Distributions

Topological reconstruction of $\Lambda p\pi$ to look of H

- $-2.2 < m_H < 2.231 \text{ GeV/c}^2$
- No visible signal in the data

N. Shah for STAR Col. Nucl. Phys. A 914 (2013) 410

ALICE Col. Phys. Lett. B 752 (2016) 267

NΩ-dibaryon from Heavy-Ion Collisions

 \mathbf{M} N Ω -dibaryon is an isospin 1/2 doublet and has both p Ω and n Ω channels possible

MIn experiments, we can look at $p\Omega$ channel with two particle correlation analysis or invariant mass analysis (the J=2, S=-3 state weak decay is challenging)

Invariant mass

STAR

Significant combinatorial background

PΩ Correlation Function

STAR

PP+SC \rightarrow Pair Purity + Mom. Smearing Correction R \rightarrow Emission source size Boxes \rightarrow systematic uncertainty

Comparison of measured P Ω correlation function from 0-40 and 40-80% centrality with the predictions for P Ω interaction potentials V_I, V_{II} and V_{III}.

Spin-2 p Ω potentials	V	V _{II}	V _{III}
Binding energy E _B (MeV)	-	6.3	26.9
Scattering length a_0 (fm)	-1.12	5.79	1.29
Effective range r _{eff} (fm)	1.16	0.96	0.65

Phys. Rev. C 94, 031901 (2016)

Goals of the HypHI phase 0 experiment

The phase 0 experiment:

- aimed to demonstrate the feasibility of hypernuclear spectroscopy by means of heavy ion collisions.
- focused on the study of ${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H, ${}^{5}_{\Lambda}$ He
- ▶ via a reaction ⁶Li beam at 2 AGeV on a 12 C target.

Christophe Rappold

(Sub-Threshold) Strangeness Production: the Complete Picture

- Strange particle yields rise stronger than linear with $<A_{part}> (M \sim <A_{part}>^{\alpha})$

- Universal <A_{part}> dependence of strangeness production

→ Hierarchy in production threshold not reflected

 $N \rightarrow NYK^+$ $\sqrt{s_{NN}} = 2.55 \text{ GeV}$ $NN \rightarrow NNK^+K^- \sqrt{s_{NN}} = 2.86 \text{ GeV}$

H. Schuldes, T. Scheib

Hypertrition search in Ar+KCl 2.6 GeV

Future plans: Investigate Au+Au data at 2.4 GeV (lower energy but heavier system)

and 3 body decay channel

Eur.Phys.J. A49 (2013) 146

Ambiguities in description, potential extraction misleading at the moment.

No indication for sequential K^+K^- freeze-out when correcting for ϕ feed-down.

Universal $<A_{part}>$ dependence of strange hadrons.

Macroscopic description and Freeze-out Parameter T_{kin} =62±10 MeV and < β_r >=0.36±0.04 extracted from blast wave fit

July 2017 update: excellent description of ALICE@LHC data

energy dependence of hadron production described quantitatively

together with known energy dependence of charged hadron production in Pb-Pb collisions we can predict yield of all hadrons at all energies with < 10% accuracy

no new physics needed to describe K+/pi+ ratio including the 'horn'

Systematic uncertainties in statistical hadronization model

in general, not easy to estimate

from analysis of uncertainties in mass spectrum, and in branching ratios, and considering the Boltzmann suppression, we get:

 $\Delta T \le 5$ MeV at μ_{h} =0 and T = 156 MeV

The Hypertriton

is coalescence approach an alternative?

coalescence approach, general considerations for loosely bound states

- production yields of loosely bound states is entirely determined by mass, quantum numbers and fireball temperature.
- hyper-triton and 3He have very different wave functions but essentially equal production yields.
- energy conservation needs to be taken into account when forming objects with baryon number A from A baryons.
- delicate balance between formation and destruction; maximum momentum transfer onto hyper-triton before it breaks up: Δ Q_{max} < 20 MeV/c, typical pion momentum p_pi = 250 MeV/c, typical hadronic momentum tranfer > 100 MeV/c
- hyper-triton interaction cross section with pions or nucleons at thermal freeze-out is of order $\sigma > 70 \text{ fm}^2$. For the majority of hyper-tritons to survive, the mfp λ has to exceed 15 fm \rightarrow density of fireball at formation of hyper-triton $n < 1/(\lambda \sigma) = 0.001/\text{fm}^3$. Completely inconsistent with formation at kinetic freeze-out, where n ≈ 0.05

hypothesis:

all nuclei and hyper-nuclei are formed as compact multiquark states at the phase boundary. Then slow time evolution into hadronic respresentation.

Andronic, pbm, Redlich, Stachel, arXiv :1710.09425

How can this be tested?

precision measurement of spectra and flow pattern for light nuclei and hyper-nuclei

a major new opportunity for ALICE Run3 and for CBM/NICA/JPARC/NA61

Iouri Vassiliev es on strangeness physics with CBM **Extreme IR conditions** Physics case: Exploring the QCD phase diagram

Book

Compressed Baryonic Matter in aboratory Experiments

MPD@NICA: bulk observables CBM: bulk and rare observables, high statistic!

The equation-of-state at high $\rho_{\rm B}$ collective flow of hadrons particle production at threshold energies: open charm, multi-strange hyperons, HN

Deconfinement phase transition at high $\rho_{\rm B}$

 excitation function and flow of strangeness $(K, \Lambda, \Sigma, \Xi, \Omega)$ and charm (J/ ψ , ψ ', D⁰, D_s, D[±], Λ_c)

QCD critical endpoint

 excitation function of event-by-event fluctuations ($\mathbf{K}/\mathbf{\pi}, \dots \mathbf{\Xi}/\pi, \mathbf{\Omega}/\pi$)

Onset of chiral symmetry restoration at high $\rho_{\rm R}$

- in-medium modifications of hadrons (ρ, ω, ϕ)
- excitation function of multi-strange

(anti)hyperons (PHSD 4.0)

Volodymyr Vovchenko

Recent thermal model developments

connection of (anti-)nuclei to critical observables

Summary

- Proper modeling of hadronic interactions crucially important for thermal model applications
- Thermal model works very well for light nuclei yields. Only in ideal HRG, however, it does point to a unique freeze-out temperature.
- The van der Waals type interactions between baryons in HRG change qualitative behavior of fluctuations of conserved charges in the crossover region
- LQCD data at both, $\mu = 0$ and imaginary μ , points to overall repulsive baryonic interactions in the crossover region, with an average "eigenvolume" parameter $b \simeq 1 \text{ fm}^3$
- Imaginary μ_B LQCD data show no evidence for existence of light nuclei at $T \sim 150$ MeV. Partial pressure in |B| = 2 sector is dominated by repulsive baryonic interactions.

Five-body structure of heavy pentaquark system

Emiko Hiyama (Kyushu Univ./RIKEN)

Motivated by the observed Pc(4380) and Pc(4450) systems at LHCb,
 we calculated energy spectra of qqqcc system using non-relativistic constituent quark
 model. To obtain resonant states, we also use real scaling method.

Currently, we find no sharp resonant states (penta-quark like) with L=0,S=1/2 (J^π=1/2⁻) and L=0, S=3/2(J^π=3/2⁻) at observed energy region. However, we have one resonant state at 4690 MeV for J^π=1/2⁻ and at 4890 MeV for J^π=3/2⁻. This can be penta-quark state.

From our calculation, we would suggest that the resonant states observed at LHCb are meson-baryon resonant states which we cannot calculate in our model.

If it is possible to produce the penta-quark system at Alice, I would like to ask you what kinds of pentaquark system they can produce.

Thank you to all speakers for very interesting presentations

Thank you to all participants for very interesting discussions