Recent thermal model developments connection of (anti-)nuclei to critical observables

Volodymyr Vovchenko

ITP & FIAS, Goethe University Frankfurt, Germany

- Thermal fits, excluded volume effects, and role of light nuclei
- Recent HRG model developments based on lattice QCD

EMMI Workshop on anti-matter, hyper-matter and exotica production at LHC Turin, Italy

Thermal model and light nuclei

• Thermal model: Particles, including light nuclei, stem from thermally equilibrated source. Described by HRG model

ALICE Collaboration, 1710.07531

• Another approach: coalescence model (not covered in this talk) See tomorrow's talks by C.-M. Ko, U. Heinz, A. Botvina

Excluded-volume effects

Excluded volume model: a schematic way to include repulsive interactions between hadrons in HRG [D. Rischke et al., Z. Phys. C (1991); G. Yen et al., PRC (1997)]

$$n_i^{ev} = \frac{n_i^{id}}{1 + \sum_j v_j n_j^{id} e^{-v_j P/T}} e^{-v_i P/T}$$

Each hadron assigned an "eigenvolume" $v_i = \frac{16\pi}{3}r_i$, where r_i is radius parameter¹

Most common (and simplest) case: identical v_i for all hadrons, e.g. $r_i = r = 0.3$ fm [A. Andronic et al., 1201.0693]

In this case EV effects cancel out in hadron yield ratios and thermal fits are unaffected

EV interactions also often used for light nuclei in nuclear matter, as a mechanism for cluster dissolution at high densities Lattimer, Swesty, Nucl. Phys. A (1991); Shen et al., nucl-th/9806095; S. Typel, EPJ (2016)

 $^{^{1}}r_{i}$ value should not be identified a hard-core radius. This cannot be done due to quantum mechanical effects.

Excluded-volume effects

There is no reason for all radii parameters to be constant

Scattering phase shifts suggest significant repulsive interactions between baryons They do *not* yield as much evidence for meson-meson or meson-baryon repulsion [Prakash, Venugopalan, Nucl. Phys. A (1992); P.M. Lo et al., 1703.00306]

As soon interactions are switched on thermal fits may look quite different² <u>More dramatic effects with some other parametrizations</u>, e.g. bag model ¹This parametrization first studied in Andronic et al., 1201.0693 ²V.V., H. Stoecker, 1512.08046

Origin of the two minima

Non-monotonic behavior when $v_{\pi} < v_{p}$ which yields two solutions

L.M. Satarov et al., 1610.08753

Adding the light nuclei

V.V., H. Stoecker, 1610.02346

Adding the light nuclei

The 2nd minimum strikes again

V.V., H. Stoecker, 1610.02346

Fitting light nuclei only

Fitting light nuclei only

Disadvantage: Fits are even more sensitive to EV corrections

¹A. Andronic et al., 1710.09425

Penalty factor

Alternatively, one could consider penalty factor p_f

For 0-10% Pb+Pb collisions penalty factor is around 300 ALICE Collaboration, 1506.08951, 1710.07531

Penalty factor in thermal model: EV effects

Calculation done for $r_M = 0$, $r_p = 0.3$ fm ($v \simeq 0.45$ fm³) Data no longer point to a unique temperature value

Recent HRG model developments

QCD equation of state at $\mu = 0$

In the last few years, rich amount of lattice data

- Rapid breakdown of ideal HRG model in crossover region for description of susceptibilities¹
- Often interpreted as clear signal of deconfinement...
- But what is the role of hadronic interactions beyond those in ideal HRG?

¹Ding, Karsch, Mukherjee, IJMPE 24, 1530007 (2015) HotQCD Collaboration: 1407.6387; 1701.04325; 1708.04897 Wuppertal-Budapest Collaboration: 1112.4416, 1309.5258, 1507.04627

Nucleon-nucleon interaction

Many hadronic interactions described by resonance formation... however

Nucleon-nucleon potential:

- Repulsive core at small distances
- Attraction at intermediate distances
- No resonance structure
- Suggestive similarity to vdW interactions
- Could nuclear matter be described by vdW equation?

Nuclear matter with quantum van der Waals (QvdW) equation

$$p(T,n) = p_q^{\mathrm{id}}\Big(T, \frac{n}{1-bn}\Big) - a n^2$$

 $E/A = -16 \text{ MeV}, \ n_0 = 0.16 \text{ fm}^{-3} \Rightarrow a_{NN} = 329 \text{ MeV fm}^3, \ b_{NN} = 3.42 \text{ fm}^3$

V.V., Anchishkin, Gorenstein, PRC '15; Redlich, Zalewski, APPB '16.

QvdW gas of nucleons: (T, μ) plane

 (T, μ) plane: structure of critical fluctuations $\chi_i = \partial^i (p/T^4)/\partial (\mu/T)^i$

V.V., D. Anchishkin, M. Gorenstein, R. Poberezhnyuk, PRC 91, 064314 (2015)

14/29

van der Waals interactions in hadron resonance gas

Let us now include nuclear matter physics into HRG...

(Q)vdW-HRG model

- Identical vdW interactions between all baryons
- Baryon-antibaryon, meson-meson, meson-baryon vdW terms neglected
- Baryon vdW parameters extracted from ground state of nuclear matter $(a = 329 \text{ MeV fm}^3, b = 3.42 \text{ fm}^3)$

Three independent subsystems: mesons + baryons + antibaryons

$$p(T, \boldsymbol{\mu}) = P_{M}(T, \boldsymbol{\mu}) + P_{B}(T, \boldsymbol{\mu}) + P_{\bar{B}}(T, \boldsymbol{\mu}),$$

$$\mathcal{P}_{\mathcal{M}}(\mathcal{T}, oldsymbol{\mu}) = \sum_{j \in \mathcal{M}} \mathcal{p}^{\mathrm{id}}_j(\mathcal{T}, \mu_j) \quad ext{and} \quad \mathcal{P}_{\mathcal{B}}(\mathcal{T}, oldsymbol{\mu}) = \sum_{j \in \mathcal{B}} \mathcal{p}^{\mathrm{id}}_j(\mathcal{T}, \mu_j^{\mathcal{B}*}) - \mathfrak{a} \, n_{\mathcal{B}}^2$$

In this simplest setup model is essentially "parameter-free"

Crucial point: EV/vdW terms for baryon-baryon pairs only

V.V., M. Gorenstein, H. Stoecker, Phys. Rev. Lett. 118, 182301 (2017)

vdW-HRG at $\mu_B = 0$: thermodynamics

- vdW-HRG does not spoil existing agreement of Id-HRG with LQCD despite significant excluded-volume interactions between baryons
- Not surprising: matter meson-dominated at $\mu_B = 0$
- No acausal behavior

V.V., M. Gorenstein, H. Stoecker, Phys. Rev. Lett. 118, 182301 (2017)

vdW-HRG at $\mu_B = 0$: susceptibilities

- Quantitative features of QCD captured by vdW-HRG
- Extrapolation from cold NM to high T overestimates interaction effects 17/29

vdW-HRG at finite μ_B

Net-baryon fluctuations in $T - \mu_B$ plane: χ_4^B / χ_2^B

- Almost no effect in Id-HRG, only Fermi statistics...
- Rather rich structure for vdW-HRG, huge effect of vdW interactions!
- Fluctuations seen at RHIC are remnants of nuclear liquid-gas PT?

V.V., M. Gorenstein, H. Stoecker, Phys. Rev. Lett. 118, 182301 (2017) see also A. Mukherjee et al., 1611.10144

Alternative: repulsive mean field

HRG with repulsive mean-field interactions between baryons Huovinen, Petreczky, 1708.00879

$$p_B + \bar{p}_B = T(n_B + \bar{n}_B) + \frac{K}{2}(n_B^2 + \bar{n}_B^2),$$

where K = 450 MeV fm³ based on empirical NN phase shifts.

"Signals of deconfinement" interpreted in terms of repulsive baryonic interactions 19/29

Hard-core repulsion: classical vs Beth-Uhlenbeck

Nucleon $\lambda_{dB} = \sqrt{2\pi/(mT)} \simeq 1.3$ fm at T = 150 MeV, comparable to r_c QM approach to NN hard-core repulsion: Beth-Uhlenbeck (BU) formula

- Classical approach with $r_c \simeq 0.25$ -0.3 fm¹ underestimates EV by factor 3-4
- Radius parameter in EV model is very different from actual hard-core radius!
- Correcting for residual attraction, one arrives at $b\simeq 1~{
 m fm}^3$ at $T\sim 150~{
 m MeV}$

¹NN-scattering data analysis: R. B. Wiringa et al., Phys. Rev. C **51**, 38 (1995) V.V, A. Motornenko, M. Gorenstein, H. Stoecker, 1710.00693

Revised LQCD comparison

Conclusion:

Empirical and LQCD evidence for net repulsive EV-type baryonic interactions with

 $b\simeq 1~{\rm fm}^3$ in the crossover region

Not much evidence for significant repulsion between other hadron pairs

Imaginary μ_B

QCD observables at imaginary μ_B

QCD thermodynamics with relativistic cluster/virial expansion:

Pressure:
$$\frac{p(T, \mu_B)}{T^4} = \sum_{k=0}^{\infty} p_k(T) \cosh\left(\frac{k\mu_B}{T}\right),$$

Net baryon density: $\frac{\rho_B(T, \mu_B)}{T^3} = \sum_{k=1}^{\infty} b_k(T) \sinh\left(\frac{k\mu_B}{T}\right), \quad b_k(T) \equiv k p_k(T)$

Lattice QCD is problematic at real μ but tractable at imaginary μ $\mu_B \to i\tilde{\mu}_B \Rightarrow QCD$ observables obtain trigonometric Fourier series form Pressure: $\frac{p(T, i\tilde{\mu}_B)}{T^4} = \sum_{k=0}^{\infty} p_k(T) \cos\left(\frac{k\tilde{\mu}_B}{T}\right),$ Net baryon density: $\frac{\rho_B(T, i\tilde{\mu}_B)}{T^3} = i \sum_{k=1}^{\infty} b_k(T) \sin\left(\frac{k\tilde{\mu}_B}{T}\right), \quad b_k(T) \equiv k p_k(T)$

Coefficients $b_k(T)$ can and are now being calculated in LQCD

At low T/densities QCD \simeq ideal HRG with light nuclei

$$\frac{\rho_B^{hrg}(T,\mu_B)}{T^3} = 2 \sum_{i \in B} \int dm \,\rho_i(m) \,\frac{d_i \,m^2}{2\pi^2 T^3} \,K_2\left(\frac{m}{T}\right) \sinh\left(\frac{\mu_B}{T}\right) \\ + 4 \sum_{\substack{i \in d, \{N\Lambda\}, \dots \\ b_2(T) \\ b_2(T) \\ b_2(T) \\ b_2(T) \\ b_3(T) \\ \hline \end{array} \sinh\left(2\frac{\mu_B}{T}\right) \sinh\left(3\frac{\mu_B}{T}\right)$$

Light nuclei induce positive $b_k(T)$ for $k \ge 2$, which are otherwise zero in ideal Boltzmann HRG

Connection to light nuclei: low temperatures

Even lower temperatures: interacting gas of nucleons

Free deuteron gas contribution to the reduced b_2 coefficient

$$ar{b}_2(T) = rac{b_2(T)}{b_1(T)} e^{m_N/T} = rac{3}{2^{1/2}} e^{E_d/T}$$

can be compared with the model-independent calculation for interacting nucleons employing empirical phase shifts [Horowitz, Schwenk, nucl-th/0507033]

 $b_2(\,T)$ corresponds to free deuterons at $\,T \lesssim 10$ MeV

24/29

Connection to light nuclei: crossover region

Light nuclei in ideal HRG yield positive $\bar{b}_2(T)$ at crossover temperatures

¹V.V., A. Pásztor, Z. Fodor, S.D. Katz, H. Stoecker, 1708.02852; S. Borsányi, QM2017

Connection to light nuclei: crossover region

Light nuclei in ideal HRG yield positive $\bar{b}_2(T)$ at crossover temperatures

Contradicts imaginary μ_B lattice data¹: $b_2(T) < 0$ for T > 135 MeV Modification of ideal HRG model is required

¹V.V., A. Pásztor, Z. Fodor, S.D. Katz, H. Stoecker, 1708.02852; S. Borsányi, QM2017

Imaginary μ_B and repulsive baryonic interactions

- Ideal HRG describes well $b_1(T)$ at small temperatures
- Non-zero $b_j(T)$ for $j \ge 2$ signal deviations from ideal HRG
- Addition of EV interactions between baryons reproduces lattice trend

V.V., A. Pásztor, Z. Fodor, S. Katz, H. Stoecker, 1708.02852; S. Borsányi, QM2017

"Excluded volume" parameter from imaginary μ_B data

"Excluded volume" parameter of BB interactions can be estimated from lattice

V.V., A. Pásztor, Z. Fodor, S.D. Katz, H. Stoecker, 1708.02852

Cluster expansion model for imaginary μ_B

EV-type expression, but matched to Stefan-Boltzmann limit

$$b_k(T) = \alpha_k^{SB} \frac{[b_2(T)]^{k-1}}{[b_1(T)]^{k-2}}, \qquad \alpha_k^{SB} = \frac{[b_1^{\rm SB}]^{k-2}}{[b_2^{\rm SB}]^{k-1}} b_k^{\rm SB}.$$

Predicts all $b_k(T)$, works very well for $b_3(T)$, $b_4(T)$, $\chi_k^B(T)$ from LQCD

Radius of convergence of Taylor series in μ_B/T sees Roberge-Weiss transition

V.V., J. Steinheimer, O. Philipsen, H. Stoecker, 1711.01261

Summary

- Proper modeling of hadronic interactions crucially important for thermal model applications
- Thermal model works very well for light nuclei yields. Only in ideal HRG, however, it does point to a unique freeze-out temperature.
- The van der Waals type interactions between baryons in HRG change qualitative behavior of fluctuations of conserved charges in the crossover region
- LQCD data at both, $\mu = 0$ and imaginary μ , points to overall repulsive baryonic interactions in the crossover region, with an average "eigenvolume" parameter $b \simeq 1 \text{ fm}^3$
- Imaginary μ_B LQCD data show no evidence for existence of light nuclei at $T \sim 150$ MeV. Partial pressure in |B| = 2 sector is dominated by repulsive baryonic interactions.

Summary

- Proper modeling of hadronic interactions crucially important for thermal model applications
- Thermal model works very well for light nuclei yields. Only in ideal HRG, however, it does point to a unique freeze-out temperature.
- The van der Waals type interactions between baryons in HRG change qualitative behavior of fluctuations of conserved charges in the crossover region
- LQCD data at both, $\mu = 0$ and imaginary μ , points to overall repulsive baryonic interactions in the crossover region, with an average "eigenvolume" parameter $b \simeq 1 \text{ fm}^3$
- Imaginary μ_B LQCD data show no evidence for existence of light nuclei at $T \sim 150$ MeV. Partial pressure in |B| = 2 sector is dominated by repulsive baryonic interactions.

Thanks for your attention!

Backup slides

