Recent results and perspectives from HypHI

Christophe Rappold¹

¹GSI - Darmstadt, Germany

2nd EMMI Workshop: Antimatter, hypermatter and exotica production at the LHC 6 November 2017

Outline

The HypHI project

Results on ${}^{3}_{\Lambda}H$ and ${}^{4}_{\Lambda}H$

Result on d+ π^- and t+ π^-

Result on hypernuclear cross section

Next at FRS and SuperFRS

Summary & Perspectives

Outline

The HypHI project

Results on ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H

Result on $d+\pi^-$ and $t+\pi^-$

Result on hypernuclear cross section

Next at FRS and SuperFRS

Summary & Perspectives

Several phases

Current knowledge:

Known Hypernuclei

Several phases

Ideal outcome of the HypHI¹ project started in 2006:

(1) Hypernuclei with Heavy Ion

Several phases

Ideal outcome of the HypHI¹ project started in 2006:

(1) Hypernuclei with Heavy Ion

Heavy Ion : Properties of the production mechanism

- ► Coalescence of Λ or (π⁺, K⁺) reaction in spectator fragment. ⇒ same velocity than projectile: Lorentz Boosted
- Effective lifetime longer:
 - \blacktriangleright 200 ps \rightarrow 600 ps ($\gamma\sim$ 3) at GSI: c $\tau\sim$ 15 to 20 cm.
 - \implies study Hypernuclei in flight
 - Lifetime measurement via decay vertex reconstruction.

Goals of the HypHI phase 0 experiment

The phase 0 experiment:

- aimed to demonstrate the feasibility of hypernuclear spectroscopy by means of heavy ion collisions.
- focused on the study of ${}^{3}_{\Lambda}H$, ${}^{4}_{\Lambda}H$, ${}^{5}_{\Lambda}He$
- ▶ via a reaction ⁶Li beam at 2 AGeV on a ¹²C target.

Experiment performed in October 2009

To measure:

- the production cross section.
- hypernuclear lifetime.

By identifying them:

1. Invariant mass spectroscopy :

$$M_{hyp} = \sqrt{(\sum E_{decay})^2 - \parallel \sum \overrightarrow{p}_{decay} \parallel^2}$$

2. Secondary vertex selection.

C. Rappold C

Results from HypHI experiment: Phase 0 @ GSI

Outline

The HypHI project

Results on ${}^3_{\Lambda}H$ and ${}^4_{\Lambda}H$

Result on $d+\pi^-$ and $t+\pi^-$

Result on hypernuclear cross section

Next at FRS and SuperFRS

Summary & Perspectives

Hypernuclear spectroscopy from ⁶Li+¹²C @ 2 A GeV

On the measured lifetime of light hypernuclei ${}^{3}_{\Lambda}H$ and ${}^{4}_{\Lambda}H$

[C. Rappold et al., Phys. Lett. B 728, 543 (2014)]

- Average combined lifetime in 2013: ${}^{3}_{\Lambda}$ H : 216 ${}^{+19}_{-16}$ ps & ${}^{4}_{\Lambda}$ H : 192 ${}^{+20}_{-18}$ ps
- Upper Limit 95 CL% at : ${}^{3}_{\Lambda}$ H : 250 ps & ${}^{4}_{\Lambda}$ H : 227 ps
- ► Theory: ³_ΛH [H. Kamada *et al.* PRC 57 1595 (1998)]: 256 ps
- ► Theory: ⁴_ΛH [T. Motoba *et al.* NPA 534 597 (1991)]: 233 or 244 ps

Combination with the most recent available lifetime results:

• Bayes Factor : $B_{10} = 3.0$

C. Rappold

GSI

New perspective: ML for hypernuclear discrimination

Increase trading influence of machine learning / AI in society:

- In 2011/2012: Use of machine learning for hypernuclear discrimination
- Training and testing data set: directly the experimental data

New perspective: ML for hypernuclear discrimination

Applying ML discrimination for ${}^{3}_{\Lambda}H$ lifetime :

- Statistical error: 198 $^{+25}_{-21}$ ps
- published HypHI lifetime : $\tau = 183^{+42}_{-32} \pm 37$ ps
- World average of 2015 : 196⁺¹⁴₋₁₃ ps

New perspective: ML for hypernuclear discrimination

Applying ML discrimination for ${}^{4}_{\Lambda}H$ lifetime :

- Statistical error: 186 ⁺²⁷₋₂₂ ps
- published HypHI lifetime : $\tau = 140^{+48}_{-33} \pm 35$ ps
- World average of 2013 : 192⁺²⁰₋₁₈ ps

Hypernuclear spectroscopy from ⁶Li+¹²C @ 2 A GeV

Important Conclusion

- Demonstration of the hypernuclear spectroscopy via heavy ion induced reaction
- Evidence of identification of Λ , ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H via invariant mass
- Estimation of the lifetime of Λ , ${}^{3}_{\Lambda}H$ and ${}^{4}_{\Lambda}H$
- Estimated ${}^{3}_{\Lambda}$ H lifetime more precise $(183^{+42}_{-32} \pm 37 \text{ ps})$
- Combined lifetime analysis excludes all current models of ³_ΛH
- Upper Limit:
 - \blacktriangleright at 95% CL : $^3_{\Lambda}H$: 223.9 ps & at 99% : 234.0 ps & $^4_{\Lambda}H$: 227 ps
- No theoretical model can explain the shorten ³_ΛH lifetime:
 - ▶ ³_ΛH [H. Kamada *et al.* PRC 57 1595 (1998)]: 256 ps
 - ▶ ⁴_ΛH [T. Motoba *et al.* NPA 534 597 (1991)]: 233 ps / 244 ps
- \blacktriangleright ³_AH may not be as weakly bound as considered

Outline

The HypHI project

Results on ${}^3_{\Lambda}$ H and ${}^4_{\Lambda}$ H

Next at FRS and SuperFRS

Summary & Perspectives

Result on $d+\pi^-$ and $t+\pi^-$

Result on hypernuclear cross section

Search for evidence of $^3_{\Lambda}$ n by observing d $+\pi^-$ and t $+\pi^-$

Search for evidence of $\frac{3}{4}$ n by observing d+ π^- and t+ π^-

- [C. Rappold et al., Phys. Rev. C (Rapid Comm.) 88, 041001 (2013)]
 - Study of possible sources : GEANT4 Monte Carlo simulations
 - A and t from ⁶Li+¹²C reaction & π[−] from the primary vertex and from the weak decay of hyperons and hypernuclei.

Search for evidence of $^3_{\Lambda}$ n by observing d $+\pi^-$ and t $+\pi^-$

Important Points

- Evidence of signals in the invariant mass of $d+\pi^-$ and $t+\pi^-$
- ▶ the decay attributed to strangeness-changing weak interaction
- A possible interpretation : $\frac{3}{\Lambda}n$
 - $t+\pi^-$: two-body decay via $^3_{\Lambda}n \rightarrow t+\pi^-$
 - ▶ $d+\pi^-$: three-body decay via $^3_{\Lambda}n \rightarrow t^*+\pi^- \rightarrow d+n+\pi^-$

However:

- theoretical studies show $\frac{3}{\Lambda}$ n not bound
 - No explanation within the current understanding of the *AN* interaction (by A. Gal (arxiv :1404.5855), E. Hiyama (PRC 89, 061302) and H. Garcilazo (PRC 89, 057001))

Model core-Λ: no viable (n-n not bound) ? borromean state ? Effimov state ?

C. Rappold

GSI

Result and Pers. HypHI

Outline

The HypHI project

Results on ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H

Result on $d+\pi^-$ and $t+\pi^-$

Result on hypernuclear cross section

Next at FRS and SuperFRS

Summary & Perspectives

Hypernuclear production cross section in spectator region

Fixed target, Reaction : ${}^{6}\text{Li}{+}{}^{12}\text{C}$ @ 2 AGeV or $\sqrt{s_{NN}} = 2.7 \text{ GeV}$

Hypernuclear production cross section in spectator region

[C. Rappold et al., Phys.Lett. B747 (2015) 129]

Inverse slope / Temperature

Inverse slope *T*, m_t spectrum : $f(m_t - m_0) = K_1/T_1 e^{-(m_t - m_0)/T_1} + K_2/T_2 e^{-(m_t - m_0)/T_2}$

- for ${}^3_{\Lambda}$ H : $T_1 \sim$ 7 \pm 2 MeV & $T_2 \sim$ 18 \pm 7 MeV
- for ${}^4_{\Lambda}{
 m H}$: $T_1\sim 6\pm 2$ MeV & $T_2\sim 13\pm 6$ MeV
- very similar to multi-fragmentation ALADIN results

[T. Odeh et al., Phys. Rev. Lett. 84 (2000) 4557]

► and Goldhaber model :[A.S. Goldhaber, Phys. Lett. B 53 (1974) 306]

C. Rappold GSI

Result and Pers. HypHI

Comparison S3 factor : HypHI results

$${\rm S}_3 = {}^3_{\Lambda}{\rm H}/{}^3{\rm He} \cdot {\rm p}/\Lambda = 0.28 ~\pm~ 0.14 ~/~ {\rm S}_4 = {}^4_{\Lambda}{\rm H}/{}^4{\rm He} \cdot {\rm p}/\Lambda = 0.08 ~\pm~ 0.04$$

Outline

The HypHI project

Results on ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H

Result on $d+\pi^-$ and $t+\pi^-$

Result on hypernuclear cross section

Next at FRS and SuperFRS Future plan Opportunity with FRS -FAIR-Phase0 2019

Summary & Perspectives

Future plan

Prospects in Hypernuclear Physics for FRS/SuperFRS

Future of HypHI project : Exotic hypernuclei / strangeness cluster

Use heavy ion and RI beam to study @ FRS & SuperFRS :

- ► Hypernuclei toward the proton and neutron drip-lines with Exotic beam ⇒ SuperFRS
- $\Lambda \Sigma$ coupling in the nuclear matter \Rightarrow SuperFRS
- ► Lifetime of exotic hypernuclei. ⇒ FRS / SuperFRS
- Most urgent : Confirmation of ${}^3_{\Lambda}n \Rightarrow FRS$

Future plan

Prospects in Hypernuclear Physics for FRS/SuperFRS

Why at FRS / Super FRS ?

- ► high momentum resolution for forward fragments : $10^{-4}\delta p/p$ optimal
 - \blacktriangleright to be compared with previous experimental apparatus : $\sim 10^{-2} \delta p/p$
- Exotic hypernuclei : Need RI beam
 - With high energy $\sim 2 \text{ AGeV} (\min 1.6 \text{AGeV})$
 - With high intensity : small cross section ($\sim \mu b$)
- Optimizing each experiment to one decay / species

 \Rightarrow Only possible at GSI/FAIR and FRS / SuperFRS

-Future plan

Future plan

Future plan

Future plan

Future plan

Transport optimization: Final step of optimal search

- ▶ MOCADI sim. for exotic beam transport within separator part
- Variables: Beam energy, transmission, survival rate, target thickness, contamination
- EPAX and QGSM: RI beam & hypernuclear cross section
 - QGSM model compared to ⁶Li+¹²C results is ×4 smaller
- Multivariate dataset \rightarrow optimization to find the optimum

	Reaction	Target	2 nd beam	E _k	I	Yield
		(cm)		(A GeV)	$(10^{6}/s)$	(/s)
⁹ ΔC	¹⁴ N+ ⁹ Be	5.5	¹² N	1.94	5.1	0.3
11 AB	²⁰ Ne+ ⁹ Be	2	¹⁷ F	1.97	5.7	0.4
⁹ _A Be	stable b	eam	¹⁶ O	2.	10.	1.5
^{′5} ∕Li	$^{12}C+^{9}Be$	6	¹⁰ C	1.94	5.1	0.8
۶Li	$^{14}\mathrm{N}{+}^{9}\mathrm{Be}$	5.5	¹² N	1.94	5.1	1.4
⁹ ∕Li	¹⁶ O+ ⁹ Be	5.5	¹⁴ O	1.93	5.5	0.7
ζHe	²⁰ Ne+ ⁹ Be	2	¹⁷ F	1.97	5.7	0.9
C. Rappold	GSI [C. R	appold and J. L Res	opez-Fidalgo PRC 94	4 (2016) 044616]	06/11/	2017 26 / 30

Copportunity with FRS - FAIR-Phase0 2019

Wasa at S2: Solenoid magnet scenario

- Generic setup that can be used for different experiments:
- Large angular coverage :
 - \blacktriangleright close to 4π acceptance in mid-rapidity, projectile and/or target rapidity region.
- Good momentum (P_t and $P_{//}$) and vertex resolution.
- High rate & granularity for multiplicity.

└─ Opportunity with FRS - FAIR-Phase0 2019

Wasa at S2: Solenoid magnet scenario

- Generic setup that can be used for different experiments:
- Large angular coverage :
 - ► close to 4π acceptance in mid-rapidity, projectile and/or target rapidity region.
- Good momentum (P_t and $P_{//}$) and vertex resolution.
- High rate & granularity for multiplicity.

27 / 30

Copportunity with FRS - FAIR-Phase0 2019

Invariant masses and yield estimation

Channel of Interest	FRS regidity (Tm)	Estimated signal Int.
$d{+}\pi^{-}$	16.675	$4.0 imes 10^3$ (8 days)
ÅH	12.623	$1.5 imes10^3~(3~{ m days})$
ÅΗ	16.675	$5.0 imes10^3~(8~{ m days})$
Experiment approved	by G-PAC to run (20	19): 45 shifts (27 main

C. Rappold

GSI

Outline

- The HypHI project
- Results on ${}^3_{\Lambda}H$ and ${}^4_{\Lambda}H$
- Result on d+ π^- and t+ π^-
- Result on hypernuclear cross section

Next at FRS and SuperFRS

Summary & Perspectives

Summary

- Hypernuclear physics: meeting point between particle physics and nuclear physics.
- ► The Phase 0 of the project was completed in October 2009 ⇒ Milestone of the phase 0.
 - ► Demonstrated the feasibility of HypHI by observing the MWD of A, ${}^3_{\Lambda}$ H, ${}^4_{\Lambda}$ H
 - Evidence of $^{3}_{\Lambda}$ n possible existence
 - Shorten lifetime of ${}^{3}_{\Lambda}$ H: More theoretical study needed.
 - Cross sections and yield ratios will constrain hyper-matter production models.
- A second experience took place in March 2010: Same setup for 7 days of ²⁰Ne+¹²C @ 2 AGeV
 - Promising results from the on-going data analysis.

Summary

- hypernuclear study @ FRS and SuperFRS as high resolution forward spectrometer
 - More precise hypernuclear spectroscopy, Sub MeV
 - FRS & SuperFRS as:
 - Separator to provide exotic beam
 - High resolution spectrometer for decayed fragment
 - Exclusive measurements : hypernuclear structure only.
- in near future at FRS (FAIR Phase 0):
 - ► ⇒ Possibility to confirm the existence of ${}^{3}_{\Lambda}$ n via d+ π^{-} : ⁶Li+¹²C @ 2AGeV
 - Improve ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H mass resolution + Lifetime
- ▶ in future at SuperFRS:
 - Study proton and neutron-rich hypernuclei possible Unknown: ⁸_ABe, ¹⁶_AC, ⁹_ALi, ¹¹_ABe, ¹³_AB
- Unique opportunity with SuperFRS for exotic hypernuclei & multi-hypernuclear object