

RECENT RESULTS FROM ALICE

Stefano Piano on behalf of ALICE Collaboration INFN sez. Trieste

MOTIVATION

- > (anti-)(hyper)nuclei are good probes of coalescence mechanism
- > (anti-)(hyper)nuclei yields are sensitive to the freeze-out temperature in heavy-ion collision due to their large mass (e.g. in the Thermal Model yield scales roughly $\propto e^{(-M/Tchem)}$)
- \blacktriangleright light (anti-)(hyper)nuclei have small binding energy and small \land separation energy,
 - e.g. $B_{\Lambda}(^{3}_{\Lambda}H) = 0.13 \pm 0.05$ MeV [H. Bando et al., Int. J. Mod. Phys. A 5 4021 (1990)] :
 - they should dissociate in a medium with high T_{chem} (~156 MeV) and be suppressed
 - ➤ if their yields equal to thermal model prediction ⇒ sign for adiabatic (isentropic) expansion in the hadronic phase
- > A=3 (anti-)(³He, t, ${}^{3}_{\Lambda}$ H), a simple system of 9 valence quarks:
 - > ${}^{3}_{\Lambda}H / {}^{3}He$ and ${}^{3}_{\Lambda}H / t$ (and anti) $\Rightarrow \Lambda$ -nucleon correlation (**local baryon-strangeness correlation**)
 - > t / ³He (and anti) \Rightarrow local charge-baryon correlation
- Anti-nuclei in nature:
 - matter-antimatter asymmetry

[J.Adam et al. (ALICE Collaboration), Nature Phys. 11, no.10, 811 (2015)]

> light nuclei measurements in high energy physics can be used in dark matter searches to estimate

the background coming from the secondary anti-nuclei

(ANTI-)(HYPER)NUCLEI PRODUCTION IN URHIC

Statistical Thermal model

- Thermodynamic approach to particle production in heavy-ion collisions
- Abundances fixed at chemical freeze-out (T_{chem}) (hyper)nuclei are very sensitive to T_{chem} because of their large mass (*M*)

Coalescence

- If baryons at freeze-out are close enough in Phase
 Space an (anti-)(hyper)nucleus can be formed
- ➤ (Hyper)nuclei are formed by protons (Λ) and neutrons which have similar velocities after the freeze-out

(ANTI-)(HYPER)NUCLEI PRODUCTION AT LHC

Light nuclei

Hypertriton

 \checkmark

Yield/event

at mid-rapidity and central collisions

~800

Production yield estimate of (anti-)(hyper)nuclei in central heavy-ion collisions at LHC energy based on thermal model:

Π

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: dE/dx, time-of-

flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V⁰, cascade)_____

B. B. Abelev et al. (ALICE Collaboration), Int. J. Mod. Phys. A 29 (2014) 1430044

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: dE/dx, time-of-

flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V⁰, cascade)

B. B. Abelev et al. (ALICE Collaboration), Int. J. Mod. Phys. A 29 (2014) 1430044

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: dE/dx, time-of-

flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V⁰, cascade)

2nd EMMI Workshop: Anti-matter, hyper-matter and exotica production at LHC | 06-11-2017 | Stefano Piano

B. B. Abelev et al. (ALICE Collaboration), Int. J. Mod. Phys. A 29 (2014) 1430044

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: dE/dx, time-of-

flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V⁰, cascade)

R. Aamout et al. (ALICE Collaboration), JINS I 3 (2008) S08002
B. B. Abelev et al. (ALICE Collaboration), Int. J. Mod. Phys. A 29 (2014) 1430044

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: dE/dx, time-of-

flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V⁰, cascade)

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: dE/dx, time-of-

flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V⁰, cascade)

0.1

ALI-PUB-72381

0.5

1.5

2

2.5

3

3.5

NUCLEI IDENTIFICATION

Low momenta

Nuclei identification via dE/dx measurement in the TPC:

- \rightarrow dE/dx resolution in central Pb-Pb collisions: ~6.5%
- Excellent separation of (anti-)nuclei from other particles over a wide momentum range
- About 10 anti-alpha candidates identified out of 23x10⁶ events by combining TPC and TOF particle identification

Higher momenta

- Excellent TOF performance:
- $\succ \sigma_{TOF} \approx 85$ ps in Pb-Pb collisions allows identification of light nuclei over a wide momentum range
- Velocity measurement with the TOF detector is used to evaluate the m^2 distribution and to subtract background from the signal in each $p_{\rm T}$ -bin by fitting the m^2 distribution

p (GeV/*c*) 2nd EMMI Workshop: Anti-matter, hyper-matter and exotica production at LHC | 06-11-2017 | Stefano Piano

4.5

5

PRECISE MASS MEASUREMENT

- ✓ Masses and binding energies of nuclei and anti-nuclei are compatible within uncertainties
- Measurement confirms the CPT invariance for light nuclei

- The precise measurement of the mass difference between nuclei and their anti-counterparts allows one to probe any difference in the interaction between nucleons and anti-nucleons.
- Looking at the mass difference between nuclei and their anti-nuclei it is possible to test the CPT invariance of the residual QCD "nuclear force"

SECONDARY CONTAMINATION

- > The measurement of nuclei is strongly affected by background from knock-out from material
- > Rejection is possible by fitting the DCA_{XY} distributions with templates

SECONDARY CONTAMINATION

- > The measurement of nuclei is strongly affected by background from knock-out from material
- > Rejection is possible by fitting the DCA_{XY} distributions with templates
- Not relevant for anti-nuclei. However, their measurement suffers from large systematics related to unknown hadronic interaction cross-sections of anti-nuclei in material

DEUTERON p_{T} SPECTRA

- Spectra become harder with increasing multiplicity in Pb-Pb and show clear radial flow
- The Blast-Wave fits describe the data well in p-Pb and Pb-Pb
- pp and p-Pb spectrum show no sign of radial flow

3

ALICE-PUBLIC-2017-006

pp

2

ALI-PREL-69336

ALI-PREL-130488

1/N_{ev} d²N/(dp₇dy) (GeV/c)⁻¹

 0^{-2}

 0^{-3}

10

 10^{-5}

 10^{-6}

DEUTERON TO PROTON RATIO

- No significant centrality dependence in Pb-Pb
- Ratio in pp collisions is a factor 2.5 lower than in Pb-Pb collisions
- > d/p ratio increases when going from pp to p-Pb and peripheral Pb-Pb, until it reaches the grand canonical thermal model value (d/p ~ $3x10^{-3}$ at T_{ch} = 156 MeV)

3-HELIUM

- Dashed curves represent individual Blast-Wave fits
- Spectrum obtained in 3 centrality classes in Pb-Pb and for NSD collisions in p-Pb

First ever measurements of (anti-)t and (anti-)3He nuclei in pp collisions \geq

- t and anti-t measurement difficult \geq
- (anti-)t/(anti-)³He agrees with unity \geq

ANTI-NUCLEI PRODUCTION

- Anti-nuclei / nuclei ratios are consistent with unity (similar to other light flavour species)
- > Ratios exhibit constant behavior as a function of p_T and centrality
- Ratios are compatible with unity, in agreement with the coalescence and thermal model expectations
- Also in pp multiplicity intervals, anti-deuterons and deuterons are produced equally

ANTI-NUCLEI PRODUCTION

- Anti-nuclei / nuclei ratios are consistent with unity (similar to other light flavour species)
- > Ratios exhibit constant behavior as a function of $p_{\rm T}$ and centrality
- Ratios are compatible with unity, in agreement with the coalescence and thermal model expectations
- Also in pp multiplicity intervals, anti-deuterons and deuterons are produced equally

ALICE-PUBLIC-2017-006

ANTI-ALPHA

For the full statistics of 2011 ALICE identified 10 Anti-Alphas using TPC and TOF

TOF β vs p/z after pre-selection of 3σ in TPC shows clear separation \rightarrow Cut on Alpha's p/z needed to suppress secondary

NUCLEI PRODUCTION IN Pb-Pb

For the full statistics of 2011 ALICE identified 10 Anti-Alphas using TPC and TOF

TOF β vs p/z after pre-selection of 3σ in TPC shows clear separation \rightarrow Cut on Alpha's p/z needed to suppress secondary Nuclei yields follow an exponential decrease with mass as predicted by the thermal model In Pb-Pb the penalty factor for adding one baryon is ~350 (for particles and antiparticles)

NUCLEI PRODUCTION IN Pb-Pb and in p-Pb

For the full statistics of 2011 ALICE identified 10 Anti-Alphas using TPC and TOF

TOF β vs p/z after pre-selection of 3σ in TPC shows clear separation \rightarrow Cut on Alpha's p/z needed to suppress secondary

Nuclei yields follow an exponential decrease with mass as predicted by the thermal model

In Pb-Pb the penalty factor for adding one baryon is ~350 (for particles and antiparticles)

And in p-Pb the penalty factor is ~600

(ANTI-)HYPERTRITON IDENTIFICATION

Decay Channels

$$\frac{{}^{3}_{\Lambda}}{}^{3}_{\Lambda}H \rightarrow {}^{3}_{\Lambda}He + \pi^{-} \qquad {}^{3}_{\Lambda}\overline{H} \rightarrow {}^{3}_{\Lambda}\overline{H}e + \pi^{+}$$

$$\frac{{}^{3}_{\Lambda}}{}^{3}_{\Lambda}H \rightarrow {}^{3}_{\Lambda}H + \pi^{0} \qquad {}^{3}_{\Lambda}\overline{H} \rightarrow {}^{3}_{\Lambda}\overline{H} + \pi^{0}$$

$$\frac{{}^{3}_{\Lambda}}{}^{3}_{\Lambda}H \rightarrow d + p + \pi^{-} \qquad {}^{3}_{\Lambda}\overline{H} \rightarrow \overline{d} + \overline{p} + \pi^{+}$$

$$\frac{{}^{3}_{\Lambda}}{}^{3}_{\Lambda}H \rightarrow d + n + \pi^{0} \qquad {}^{3}_{\Lambda}\overline{H} \rightarrow \overline{d} + \overline{n} + \pi^{0}$$

 ${}^{3}_{\Lambda}H$ search via two-body decays into charged particles:

- Two body decay: lower combinatorial background
- Charged particles: ALICE acceptance and reconstruction efficiency for charged particles higher than for neutrals

Signal extraction:

- $\succ\,$ Identify ^3He and $\pi\,$
- > Evaluate (³He, π) invariant mass
- > Apply topological cuts in order to:
 - isolate secondary decay vertex and
 - reduce combinatorial background

New preliminary results at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

HYPERTRITON LIFETIME DETERMINATION

Direct decay time measurement is difficult (~ps), but the excellent determination of primary and decay vertex allows measurement of lifetime via:

$$N(t) = N(0) e^{-\frac{t}{\tau}}$$

where $t = L/(\beta \gamma c)$ and $\beta \gamma c = p/m$ with m the hypertriton mass, p the total momentum and L the decay length

$$c\tau = \left(7.10^{+1.00}_{-1.07}(stat.) \pm 0.50(syst.)\right)cm$$

$$\tau = \left(237^{+33}_{-36}(stat.) \pm 17(syst.)\right)ps$$

15

20

10

5

Previous heavy-ion experiment results show a trend well below the free A lifetime ALICE preliminary result from Pb-Pb at 5.02 TeV is closer to the free A lifetime

2nd EMMI Workshop: Anti-matter, hyper-matter and exotica production at LHC | 06-11-2017 | Stefano Piano

25

ct (cm)

(ANTI-)HYPERTRITON YIELDS

COALESCENCE MODEL: $\bar{p}/p \sim \bar{\Lambda}/\Lambda \sim 1$

THERMAL MODEL FITS

Different models describe particle yields including light (hyper-)nuclei well with T_{ch} of about 156 MeV

Including nuclei in the fit causes no significant change in ${\it T_{ch}}$

An AND H-DIBARYON SEARCH

H-Dibaryon: hypothetical udsuds bound state

- First predicted by Jaffe [Jaffe, PRL 38, 195617 (1977)]
- Several predictions of bound and also resonant states.
- Recent Lattice models predict weakly bound states
 [Inoue et al., PRL 106, 162001 (2011), Beane et al., PRL
 106, 162002 (2011)]
- If H-Dibaryon is bound: $m_{H} < \Lambda \Lambda$ threshold
- > measurable channel H $\rightarrow \Lambda p\pi$ but BR depends on binding energy

Bound state of $\pmb{\Lambda n}$?

HypHI experiment at GSI sees evidence of a

new state: $\Lambda n \rightarrow d + \pi^{-}$ [C. Rappold et al. (HypHI collaboration), Phys. Rev. C88, 041001(R) (2013)]

An AND H-DIBARYON SEARCH

- ➤ No signal visible
- The upper limits for exotica are lower than the thermal model expectation by a factor 20
- Thermal models with the same temperature describe precisely the production yield of deuterons, ³He and ³_AH
- The existence of such states with the assumed B.R., mass and lifetime is questionable

COALESCENCE PARAMETER B_A

- If baryons at freeze-out are close enough in phase space (i.e. geometrically and in momentum) and match spin state, a (anti-)nucleus can be formed
- Usually, since the nucleus is larger w.r.t. the source, the phase space is reduced to the momentum space
- Assuming that p an n have the same mass and have the same p_T spectra:

$$E_A \frac{\mathrm{d}^3 N_A}{\mathrm{d} p_A^3} = B_A \left(E_\mathrm{p} \frac{\mathrm{d}^3 N_\mathrm{p}}{\mathrm{d} p_\mathrm{p}^3} \right)^2$$

> For A=2:
$$B_2 = E_d \frac{\mathrm{d}^3 N_d}{\mathrm{d} p_d^3} \left(E_p \frac{\mathrm{d}^3 N_p}{\mathrm{d} p_p^3} \right)^{-2}$$

Measured deuteron p_{T} -spectra

Measured proton p_{T} -spectra

COALESCENCE PARAMETER B₂

$$B_2 = E_d \frac{\mathrm{d}^3 N_d}{\mathrm{d} p_d^3} \left(E_p \frac{\mathrm{d}^3 N_p}{\mathrm{d} p_p^3} \right)^{-2}$$

- Coalescence parameter B_2 decreases with centrality in \geq Pb-Pb and increases with $p_{\rm T}$
- Similar effect seen in p-Pb: decrease with multiplicity, \geq but less pronounced

B₂ (GeV²/c³)

10

 10^{-2}

 10^{-3}

10-4

0.5

2nd EMMI Workshop: Anti-matter, hyper-matter and exotica production at LHC | 06-11-2017 | Stefano Piano

20-30%

ALICE Preliminary deuterons, |y| < 0.5

p_/A (GeV/c)

2.5

• 60-70%

nalisation uncertainty: 2.55%

Pb-Pb

• 10-20%

• 50-60%

pp INEL vs = 13 TeV

= 5.02 TeV

5-10%

40-50%

• 80-90% 0 0

1.5

ALICE-PUBLIC-2017-006

Pb-Pb *s*_{NN} ● 0-5%

• 30-40%

• 70-80%

COALESCENCE PARAMETER B₂

$$B_2 = E_d \frac{\mathrm{d}^3 N_d}{\mathrm{d} p_d^3} \left(E_p \frac{\mathrm{d}^3 N_p}{\mathrm{d} p_p^3} \right)^{-2}$$

- Coalescence parameter B_2 decreases with centrality in \geq Pb-Pb and increases with $p_{\rm T}$
- Similar effect seen in p-Pb: decrease with multiplicity, \geq but less pronounced

B₂ (GeV²/c³)

10

 10^{-2}

 10^{-3}

10-4

0.5

Pb-Pb • 0-5%

• 30-40%

• 70-80%

SNN

2nd EMMI Workshop: Anti-matter, hyper-matter and exotica production at LHC | 06-11-2017 | Stefano Piano

20-30%

ALICE Preliminary deuterons, |y| < 0.5

p_/A (GeV/c)

2.5

• 60-70%

Pb-Pb

• 10-20%

50-60%

2

 \circ pp INEL s = 13 TeV

= 5.02 TeV

5-10%

40-50%

80-90%

1.5

ALICE-PUBLIC-2017-006

0 0

COALESCENCE PARAMETER *B*₂

(*) R. Scheibl and U. Heinz, Phys.Rev. C59, 1585 (1999)

Simple coalescence model

- Flat B₂ vs p_T and no dependence on multiplicity/centrality
- Observed "small systems": pp, p-Pb and peripheral Pb-Pb

More elaborated coalescence model takes into account the volume of the source:

- \blacktriangleright B₂ scales like HBT radii (*)
- Decrease with centrality in Pb-Pb is explained as an increase in the source volume
- Increase with p_T in central Pb-Pb reflects the k_T-dependence of the homogeneity volume in HBT
- Qualitative agreement in central Pb-Pb collisions

COALESCENCE PARAMETER B_3

ALI-PREL-131005

p₁ / A (GeV/c)

2.6

2.4

• 10-40%

DEUTERON v_2 FOR DIFFERENT CENTRALITIES

Angular distribution of reconstructed charged particles can be expanded into a Fourier series w.r.t. symmetry plane:

$$E\frac{\mathrm{d}^3 N}{\mathrm{d}p^3} = \frac{1}{2\pi} \frac{\mathrm{d}^2 N}{p_{\mathrm{T}} \mathrm{d}p_{\mathrm{T}} \mathrm{d}y} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos\left(n\left(\varphi - \Psi_n\right)\right)\right)$$

 $v_n = \left\langle \cos\left(n(\varphi - \Psi_n)\right)\right\rangle$

Elliptic flow (v₂) is sensitive to the system evolution:
 It probes initial conditions and constrains particle production mechanisms

- > A significant v_2 is observed for deuterons
- The value of v₂(p_T) increases progressively from central to semi-central collisions

DEUTERON v₂ FOR DIFFERENT CENTRALITIES

- > A significant v_2 is observed for deuterons
- > The value of $v_2(p_T)$ increases progressively from central to semi-central collisions
- If protons have only elliptical flow
- And if the light nucleus is formed by simple coalescence, v₂ can be expressed as

$$v_{2,d}(p_{\rm T}) = \frac{2v_{2,p}(p_{\rm T}/2)}{1 + 2v_{2,p}^2(p_{\rm T}/2)}$$

Such a simple coalescence model is not able to reproduce the measured elliptic flow of deuterons

DEUTERON v₂ FOR DIFFERENT CENTRALITIES

Simplified hydro model (Blast-Wave) is able to describe spectra and flow at the same time, suggesting an early "freeze out"

- > A significant v_2 is observed for deuterons
- > The value of $v_2(p_T)$ increases progressively from central to semi-central collisions
- If protons have only elliptical flow
- And if the light nucleus is formed by simple coalescence, v₂ can be expressed as

$$v_{2,d}(p_{\rm T}) = \frac{2v_{2,p}(p_{\rm T}/2)}{1 + 2v_{2,p}^2(p_{\rm T}/2)}$$

Such a simple coalescence model is not able to reproduce the measured elliptic flow of deuterons

OUTLOOK – ALICE UPGRADE

At the end of Pb-Pb during RUN2 (Nov. 2018) the expected statistics for A=2,3 is >2x

During the Long Shutdown 2 (2019-2020):

- New Inner Tracking System (ITS)
 - improved pointing precision
 - less material -> thinnest tracker at the LHC
- Upgrade of Time Projection Chamber (TPC):
 - ✓ new GEM technology for readout chambers
 - ✓ continuous readout
 - ✓ faster readout electronics
- High Level Trigger (HLT):
 - ✓ new architecture
 - ✓ on line tracking & data compression
 - ✓ 50kHz Pb-Pb event rate

At the end of RUN3 (2023):

the expected Integrated Luminosity: ~10 nb⁻¹ (~8x10⁹ collisions in the 0-10% centrality class)

OUTLOOK – ALICE UPGRADE

At the end of Pb-Pb during RUN2 (Nov. 2018) the expected statistics for A=2,3 is >2x

During the Long Shutdown 2 (2019-2020):

- New Inner Tracking System (ITS)
 - improved pointing precision
 - less material -> thinnest tracker at the LHC
- Upgrade of Time Projection Chamber (TPC):
 - ✓ new GEM technology for readout chambers
 - ✓ continuous readout
 - ✓ faster readout electronics
- High Level Trigger (HLT):
 - ✓ new architecture
 - ✓ on line tracking & data compression
 - ✓ 50kHz Pb-Pb event rate

At the end of RUN3 (2023):

the expected Integrated Luminosity: ~10 nb⁻¹ (~8x10⁹ collisions in the 0-10% centrality class)

All the physics which is now done for A = 2 and A = 3 (hyper-)nuclei will be done for A = 4

CONCLUSIONS

- Excellent ALICE performance allows for detection of light (anti-)nuclei and (anti-)hypernuclei and upper limit determination of exotic bound states
- ✓ Large production of nuclear clusters measured by ALICE as predicted by the thermal model
- Thermal (Pb-Pb) and coalescence models (pp, p-Pb) describe the (anti-)(hyper)nuclei data rather well
- ✓ Light nuclei "puzzle": deuteron yield and $v_2(p_T)$ in Pb-Pb collisions suggest an early "freeze out", while large effects of re-interactions (favoring late stage coalescence) should be expected
- ALICE preliminary hypertriton lifetime result from Pb-Pb at 5.02 TeV is close to the the free Λ
 lifetime
- ✓ Upper limits of production yield for searched exotica (An and AA) are 20 times below the thermal model expectation
- Future LHC runs, RUN2 and RUN3, and ALICE upgrades will allow for precise study of (anti-)(hyper)nuclei production yield (and lifetime)
- ✓ New and more precise data are expected from the LHC in the next years !

A Large Ion Collider Experiment

THE EXPERIMENTAL CHALLENGE

ALICE

The challenge: extract the ${}^{3}_{\Lambda}$ H signal from an overwhelming background

K. Aamodt et al. (ALICE Collaboration) Phys. Rev. Lett. 106, 032301 (2011) ; J. Adam et al (ALICE Collaboration) Phys. Rev. Lett. 116, 222302 (2016)

COMPARISON WITH THEORETICAL PREDICTIONS

Three different theoretical predictions drawn as a function of BR(${}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-}$) after being multiplied by BR:

- Hybrid UrQMD: combines the hadronic transport approach with an initial hydrodynamical stage for the hot and dense medium (J. Steinheimer et al., Phys. Lett. B 714, 85 (2012))
- ✓ GSI-Heidelberg: equilibrium statistical model with *T*_{chem}=156 MeV (A. Andronic et al., Phys. Lett. B 697, 203 (2011))
- SHARE: non-equilibrium thermal model with
 *T*_{chem}=138.3 MeV (M. Petráň et al., Phys. Rev. C 88, 034907 (2013))
- Great sensitivity to theoretical models parameters
- Non–equilibrium statistical thermal model (Petráň-Rafelski SHARE) provides better global fitting (χ²~1) to lower mass hadrons but misses ³_ΛH and light nuclei
- > Experimental data closest to equilibrium thermal model with $T_{chem} = 156$ MeV and to Hybrid UrQMD

HYPERTRITON LIFETIME DETERMINATION

HYPERTRITON LIFETIME DETERMINATION

ALICE Preliminary Pb-Pb $\sqrt{s_{NN}}$ = 5.02 TeV

0-90%, |y| < 0.8

Two methods for estimation:

- ct spectra fit (exponential fit to the differential yield in different *c*t bins)
- ct unbinned fit as crosscheck method

ALI-PREL-130191

10 $c\tau = 7.10^{+1.00}_{-1.07}$ (stat.) ± 0.50 (syst.) (cm) $\tau = 237^{+33}_{-36}$ (stat.) ± 17 (syst.) (ps) 15 10 20 25 *c*t (cm) ALI-PREL-130174 $c\tau = (7.10^{+1.00}_{-1.07}(stat_{\star}) + 0.50(svst_{\star}))cm$

$$\tau = \left(237^{+33}_{-36}(stat.) \pm 17(syst.)\right) ps$$

HYPERTRITON LIFETIME WORLD AVERAGE

STAR Collaboration, arXiv:1710.00436v1 [nucl-ex]

 $\tau = \left(142^{+24}_{-21}(stat.) \pm 31(syst.)\right) ps$

- \blacktriangleright Previous heavy-ion experiment results show a trend well below the free Λ lifetime
- > ALICE preliminary result from Pb-Pb at 5.02 TeV is closer to the free Λ lifetime
- > STAR result from Au-Au collision is about 50% shorter than the free Λ lifetime
- > The puzzle of the ${}^{3}_{\Lambda}$ H lifetime is still open

ALI-PREL-130195

COLLISION GEOMETRY

- Nuclei are extended objects
- Geometry not directly measurable
- Centrality (percentage of the total cross section of the nuclear collision) connected to observables via Glauber model
- Data classified into centrality percentiles for which the average impact parameter, number of participants, and number of binary collisions can be determined

K. Aamodt et al. (ALICE Collaboration), Phys. Rev. Lett. 106, 032301 (2011)