BB-interactions, $\{8\} \otimes \{8\}$ -channels **Generalized Yukawa Potentials** 2nd EMMI workshop on anti-matter, hyper-matter and exotica production at LHC Turin, Italy 6-10 November 2017 Th.A. Rijken **IMAPP**, Radboud University Nijmegen

Nijmegen ESC-models

Outline/Content Talk

- ***** General Introduction
- I. ESC-model: meson-exchanges: OBE, MPE
 - a. data fitting, couplings.
 - b. S= 0: NN-results; S=-1: YN-results.
- II. Quark-pair-creation model (QPC)
- III. S=-2: YN-, YY-results; S=-3,-4: YY-results
- IV. Matter: universal repulsion
 - a. Multi-gluon, Pomeron
 - b. Nuclear saturation, NS-matter
- \star Conclusions and Perspectives
- V. CQM and Quark-interactions
- Thanks to: Y. Yamamoto, M. Nagels, T. Motoba, H-J. Schulze

- p.2/66

Role BB-interaction Models

Particle and Flavor Nuclear Physics

Th.A. Rijken

EMMI-Turin, BB-interactions

- p.3/66

Baryon-baryon Channels S = 0, -1, -2

BB: The baryon-baryon channels S = 0, -1, -2

Th.A. Rijken

Radboud University Nijmegen

EMMI-Turin, BB-interactions

- p.4/66

V SU(2)-, SU(3)-Symmetry Hadronen, BB-channels

Baryon-Baryon Interactions: SU(2), SU(3)-Flavor Symmetry

- Quark Level: SU(3)_{flavor} ⇔ Quark Substitutional Symmetry (!!)]
 'gluons are flavor blind'
- $p \sim UUD$, $n \sim UDD$, $\Lambda \sim UDS$, $\Sigma^+ \sim UUS$, $\Xi^0 \sim USS \Leftrightarrow \{8\}$
- Mass differences \Leftrightarrow Broken SU(3)_{flavor} symmetry
- Baryon-Baryon Channels:

• $p \sim UUD$, $n \sim UDD$, $\Lambda_c \sim UDC$, $\Sigma_c^+ \sim UUC$, $\Xi_c^0 \sim UCC \Leftrightarrow \{8\}$

ESC-model, dynamical contents

ESC08c: Soft-core NN + YN + YY **ESC-model**

- ESC08-model, PTP Suppl.185(2010), arXiv2015, PRC2017.
- NN: 20 free parameters: couplings, cut-off's,

meson mixing and F/(F+D)-ratio's

• meson nonets:

 $J^{PC} = 0^{-+}; \quad \pi, \eta, \eta', K \quad ;= 1^{--}; \quad \rho, \omega, \phi, K^*$ = 0⁺⁺; $a_0(962), f_0(760), f_0(993), \kappa_1(900)$ = 1⁺⁺; $a_1(1270), f_1(1285), f_0(1460), K_a(1430)$ = 1⁺⁻; $b_1(1235), h_1(1170), h_0(1380), K_b(1430)$

- soft TPS: two-pseudo-scalar exchanges,
- soft MPE: meson-pair exchanges: $\pi \otimes \pi$, $\pi \otimes \rho$, $\pi \otimes \epsilon$, $\pi \otimes \omega$, etc.
- pomeron/odderon exchange

 multi-gluon / pion exchange
- quark-core effects,
- gaussian form factors, $exp(-\mathbf{k}^2/2\Lambda_{B'BM}^2)$
- Nagels, Rijken, Yamamoto, arXiv2015, PRC2017?

– p.6/66

.2 Method ESC08-model Analysis

Strategy: Combined Analysis NN-, YN-, and YY-data

Input data/pseudo-data:

- NN-data : 4300 scattering data + low-energy par's
- YN-data : 52 scattering data
- Nuclei/hyper-nuclei data: BE's Deuteron, well-depth's $U_{\Lambda}, U_{\Sigma}, U_{\Xi}$
- Hadron physics: experiments + theory
 a) Flavor SU(3), (b) Quark-model, (c) QCD ↔ gluon dynamics
- Meson-fields: Yukawa-forces + Short range forces (gluon-exchange/Pomeron/Odderon, Pauli-repulsion)

Output: ESC08-models (2011, 2012, 2014, 2016)

- Fit NN-data $\chi^2_{p.d.p.}$ =1.08-1.10 (!), deuteron, YN-data $\chi^2_{p.d.p.} = 1.09$
- Description all well-depth's, NO S=-1,-2,-3,-4 bound-states(!), small Λp spin-orbit (Tamura), $\Delta B_{\Lambda\Lambda}$ a la Nagara (!)

Radboud University Nijmegen

EMMI-Turin, BB-interactions

– p.8/66

Radboud University Nijmegen

EMMI-Turin, BB-interactions

– p.9/66

Radboud University Nijmegen

EMMI-Turin, BB-interactions

– p.10/66

YNa YN-results: ESC08c YN-fit

YN-results ESC08c, 2014:

• Notice: simultaneous NN + YN fit, $\chi^2_{p.d.p.}(YN) = 1.09$ (!)

Comparison of the calculated ESC08 and experimental values for the 52 YN-data that were included in the fit. The superscipts RHand M denote, respectively, the Rehovoth-Heidelberg Ref. Ale68 and Maryland data Ref. Sec68. Also included are (i) 3 $\Sigma^+ p$ Xsections at $p_{lab} = 400, 500, 650$ MeV from Ref. Kanda05, (ii) Λp Xsections from Ref. Kadyk71: 7 elastic between $350 \le p_{lab} \le 950$, and 4 inelastic with $p_{lab} = 667, 750, 850, 950$ MeV, and (iii) 3 elastic $\Sigma^{-}p$ X-sections at $p_{lab} = 450, 550, 650$ MeV from Ref. Kondo00. The laboratory momenta are in MeV/c, and the total cross sections in mb.

YND YN-results: ESC08c YN-fit

Λ_2	$p \to \Lambda p$	$\chi^2 = 3.6$	Λ	$p \to \Lambda p$	$\chi^2 = 3.8$
p_Λ	σ^{RH}_{exp}	σ_{th}	p_{Λ}	σ^M_{exp}	σ_{th}
145	180±22	197.0	135	$187.7{\pm}58$	215.6
185	$130{\pm}17$	136.3	165	$130.9{\pm}38$	164.1
210	118±16	107.8	195	$104.1 {\pm} 27$	124.1
230	$101{\pm}12$	89.3	225	86.6±18	93.6
250	83 ± 9	73.9	255	72.0±13	70.5
290	57 ± 9	50.6	300	49.9±11	46.0
$\Lambda p ightarrow \Lambda p$		$\chi^2 = 12.1$			
350	$17.2 {\pm} 8.6$	28.7	750	$13.6{\pm}4.5$	10.2
450	$26.9{\pm}7.8$	11.9	850	11.3 ± 3.6	11.4
550	7.0±4.0	8.6	950	11.3±3.8	12.9
650	9.0±4.0	18.5			

EMMI-Turin, BB-interactions

– p.12/66

YNc YN-results: ESC08c YN-fit

Λ_2	$p \to \Sigma^0 p$	$\chi^2 = 6.9$			
667	$\textbf{2.8} \pm \textbf{2.0}$	3.3	850	$10.6{\pm}3.0$	4.1
750	$7.5{\pm}2.5$	4.0	950	$5.6{\pm}5.0$	3.9
Σ^+	$p \to \Sigma^+ p$	$^+p \qquad \chi^2 = 12.4 \qquad \Sigma^-p \to \Sigma^-p$		$p \to \Sigma^- p$	$\chi^2 = 5.2$
p_{Σ^+}	σ_{exp}	σ_{th}	$p_{\Sigma^{-}}$	σ_{exp}	σ_{th}
145	123.0±62	136.1	142.5	$152{\pm}38$	152.8
155	104.0±30	125.1	147.5	146±30	146.9
165	92.0±18	115.2	152.5	142 ± 25	141.4
175	81.0±12	106.4	157.5	164±32	136.1
			162.5	138±19	131.1
			167.5	113±16	126.3
400	93.5±28.1	35.1	450.0	31.7±8.3	28.5
500	32.5±30.4	30.9	550.0	48.3±16.7	19.8
650	64.6±33.0	28.2	650.0	25.0±13.3	15.1

Th.A. Rijken

Radboud University Nijmegen

EMMI-Turin, BB-interactions

– p.13/66

YNd YN-results: ESC08c YN-fit

$\Sigma^{-}p$	$p \to \Sigma^0 n$	$\chi^2 = 5.7$	$\chi^2 = 5.7$ $\Sigma^- p$ -		$\chi^2 = 4.8$
$p_{\Sigma^{-}}$	σ_{exp}	σ_{th}	$p_{\Sigma^{-}}$	σ_{exp}	σ_{th}
110	$396{\pm}91$	200.6	110	$174{\pm}47$	241.3
120	$159{\pm}43$	175.8	120	178±39	207.2
130	157±34	155.9	130	140±28	180.1
140	125±25	139.7	140	164±25	158.1
150	111±19	126.2	150	147±19	140.0
160	115±16	114.9	160	124±14	125.0

 $r_R^{exp} = 0.468 \pm 0.010$ $r_R^{th} = 0.455$ $\chi^2 = 1.7$

EMMI-Turin, BB-interactions

– p.14/66

YN.e: X-sections

Model fits total X-sections Λp . Rehovoth-Heidelberg-, Maryland-, and Berkeley-data

Λр -> Λр

σ [mb]

EMMI-Turin, BB-interactions

– p.15/66

YN.f: X-sections

Model fits total elastic X-sections $\Sigma^{\pm}p$. Rehovoth-Heidelberg-, KEK-data

Th.A. Rijken Radboud University Nijmegen

EMMI-Turin, BB-interactions

- p.16/66

YNg: X-sections

Model fits total inelastic X-sections $\Sigma^- p \rightarrow \Sigma^0 n, \Lambda n.$

Th.A. Rijken Radboud University Nijmegen

EMMI-Turin, BB-interactions

- p.17/66

.3 ESC-model: OBE+TME

BB-interactions in the ESC-model:

One-Boson-Exchanges:

ſ	pseudo-scalar	π	K	η	η'
	vector	ho	K^*	ϕ	ω
	axial-vector	a_1	K_1	f_1'	f_1
	scalar	δ	κ	S^*	ϵ
l	diffractive	A_2	K^{**}	f	P

Two-Meson-Exchanges:

Th.A. Rijken

Radboud University Nijmegen

EMMI-Turin, BB-interactions

- p.18/66

.4 ESC-model: Meson-Pair exchanges

BB-interactions in the ESC-model (cont.):

Meson-Pair-Exchanges:

 $PP\hat{S}_{\{1\}}$: $\pi\pi, \ K\bar{K}, \ \eta\eta$

 $PP\hat{S}_{\{8\}_s}$: $\pi\eta, \, K\bar{K}, \, \pi\pi, \, \eta\eta$

 $PP\hat{V}_{\{8\}_a}$: $\pi\pi, \ K\bar{K}, \ \pi K, \ \eta K$

 $PV\hat{A}_{\{8\}_a}$: $\pi\rho, KK^*, K\rho, \ldots$

 $PS\hat{A}_{\{8\}}$: $\pi\sigma, K\sigma, \eta\sigma$

.5 Meson-exchange Potentials

SU(3)-symmetry and Coupling Constants

The baryon octet can be represented by a 3×3 -matrices (Gel64,Swa66):

$$B = \begin{pmatrix} \frac{1}{\sqrt{2}} \Sigma^{0} + \frac{1}{\sqrt{6}} \Lambda & \Sigma^{+} & -p \\ \Sigma^{-} & -\frac{1}{\sqrt{2}} \Sigma^{0} + \frac{1}{\sqrt{6}} \Lambda & -n \\ \Xi^{-} & -\Xi^{0} & -\sqrt{\frac{2}{3}} \Lambda \end{pmatrix}$$

Similarly the meson-nonets

$$P = \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta_{0}}{\sqrt{6}} + \frac{X_{0}}{\sqrt{3}} & \pi^{+} & -K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta_{0}}{\sqrt{6}} + \frac{X_{0}}{\sqrt{3}} & -K^{0} \\ -K^{-} & -\bar{K}^{0} & -\sqrt{\frac{2}{3}}\eta_{0} + \frac{X_{0}}{\sqrt{3}} \end{pmatrix}$$

Radboud University Nijmegen

EMMI-Turin, BB-interactions

- p.20/66

SU3-sym-irreps, SU3-breaking

SU3-sym-irreps, SU3-breaking:

Radboud University Nijmegen

Th.A. Rijken

EMMI-Turin, BB-interactions

– p.21/66

SU3-asym-irreps, SU3-breaking

SU3-asym-irreps, SU3-breaking:

Radboud University Nijmegen

Th.A. Rijken

EMMI-Turin, BB-interactions anti-evenetric tho

Th.A. Rijken Radboud University Nijmegen

EMMI-Turin, BB-interactions

- p.23/66

I.2 ESC-model and Chiral-symmetry

ESC-model and Chiral-symmetry

Non-linear realization Chiral-symmetry:

1. Non-linear Goldstone-boson sector,

(i) Pseudo-vector couplings pseudoscalars, SU(2), SU(3)

- (ii) two-pion(ps) etc vertices, no triple, quartic .. vertices.
- 2. SU(2), SU(3)-symmetry scalar, vector and axial-vector mesons.

References:

- a. J. Schwinger, Phys. Rev. Lett. 18, 923 (1967); Phys. Rev. 167, 1432 (1968); *Particles and Sources*, Gordon and breach, Science publishers, Inc., New York, 1969
- b. S. Weinberg, Phys. Phys. 166 (1968) 1568; Phys. Phys. 177 (1969) 2604.
- c. V. De Alfaro, S. Fubini, G. Furlan, and C. Rosetti, *Currents in Hadron Physics* Ch. 5, North-Holland Pulishing Company, Amsterdam 1973.

Meson-exchange and EFT

• Coefficients in the ($NN2\pi$ EFT-interaction Lagrangian (Ordonez & van Kolck 1992)

$$\mathcal{L}^{(1)} = -\bar{\psi} \left[8c_1 D^{-1} m_\pi^2 \frac{\boldsymbol{\pi}^2}{F_\pi^2} + 2c_2 \gamma_\mu \boldsymbol{\tau} \cdot \boldsymbol{\pi} \times \mathbf{D}^\mu - 4c_3 \mathbf{D}_\mu \cdot \mathbf{D}^\mu + 2c_4 \sigma_{\mu\nu} \boldsymbol{\tau} \cdot \mathbf{D}^\mu \times \mathbf{D}^\nu \right] \psi ,$$

EET/ DT Nucleone etc. and Diana. A Low operative

4 Quark-Pair-Creation in QCD

Quark-Pair-Creation in QCD \Leftrightarrow Flux-tube breaking

• Strong-coupling regime QQ-interaction: Multi-gluon exchange

1.5 QPC: ${}^{3}P_{0} \oplus {}^{3}S_{1}$ -model

Meson-Baryon Couplings from QPC-mechanism

• Empirically: $g_{\epsilon} \approx g_{\omega}$, and $g_{a_0} \approx g_{\rho} \Rightarrow^3 P_0$ -dominance!

I.6 QPC-model

Pair-creation in QCD: running pair-creation constant γ :

• $\rho \rightarrow e^+e^-$: C.F. Identity & V.Royen-Weisskopf:

$$f_{\rho} = \frac{m_{\rho}^{3/2}}{\sqrt{2}|\psi_{\rho}(0)|} \Leftrightarrow \gamma_0 \left(\frac{2}{3\pi}\right)^{1/2} \frac{m_{\rho}^{3/2}}{|\psi_{\rho}(0)|} \to \gamma_0 = \frac{1}{2}\sqrt{3\pi} = 1.535.$$

$$\gamma_0 = \frac{1}{2}\sqrt{3\pi} = 1.535.$$

• OGE one-gluon correction: $\gamma = \gamma_0 \left(1 - \frac{16}{3} \frac{\alpha(m_M)}{\pi}\right)^{-1/2}$

 $m_M \approx 1$ GeV, $n_f = 3$, $\Lambda_{QCD} = 100$ MeV: $\gamma \rightarrow 2.19$

- QPC (Quark-Pair-Creation) Model:
- Micu(1969), Carlitz & Kissinger(1970)
- Le Yaouanc et al(1973,1975)
- ESC-model: "quantitative science"(!!):
 - 1. QPC: $\gamma = 2.19 \rightarrow$ prediction c.c.'s
 - 2. Quantitavely excellent results, Rijken, nn-online, THEF 12.01.

EMMI-Turin, BB-interactions

- p.28/66

$^{\prime}$ QPC: ${}^{3}S_{1} + {}^{3}P_{0}$ -model and ESC08c

ESC08c Couplings and ${}^{3}S_{1} + {}^{3}P_{0}$ -Model Description

Meson	$r_M[fm]$	γ_M	$^{3}S_{1}$	${}^{3}P_{0}$	QPC	ESC08c
$\pi(140)$	0.30	5.51	g = -1.37	g = +5.12	3.76 (3.99)	3.65
$\eta'(957)$	0.60	2.22	g = -1.61	g = +6.02	4.41 (5.38)	4.32
$\rho(770)$	0.80	2.37	g = -0.09	g = +0.65	0.57 (0.68)	0.58
$\omega(783)$	0.70	2.35	g = -0.48	g = +3.60	3.12 (3.09)	3.11
$a_0(962)$	0.80	2.22	g = +0.12	g = +0.46	0.59 (0.61)	0.54
$\epsilon(620)$	0.70	2.37	g = +0.63	g = +2.35	2.98 (2.98)	2.98
$a_1(1270)$	0.60	2.09	g = -0.09	g = -0.67	-0.76 (-0.77)	-0.82
$f_1(1285)$	0.60	2.09	g = -0.08	g = -0.60	-0.68 (-0.69)	-0.76

- Weights ${}^{3}S_{1}/{}^{3}P_{0}$ are $A/B = /0.211/0.789 \approx 1:4$.
- SU(6)-breaking: (56) and (70) irrep mixing, $\varphi = -22^{\circ}$.
- QCD pair-creation constant: $\gamma(\alpha_s = 0.30) = 2.19$.
- QCD cut-off: $\Lambda_{QCD} = 259.6$ MeV, QQG form factor: $\Lambda_{QQG} = 986.2$ MeV.
- ESC08c: Pseudoscalar and axial mixing angles: -11° and $+50^{\circ}$.

G-matrix ESC-models *

Comments Λ - and Ξ -hypernuclei, well-depths

- S=-1 systems: Inclusion of the three-body repulsive (TBR) and attractive (TBA) interactions: In the case of the Λ -hypernuclei the G-matrix analysis shows that the experimental B_{Λ} values and excited spectra can be reproduced in a natural way by ESC08c. The multipomeron (MPP) repulsive contributions, which are decisively important in the high density region, should almost be canceled by the three-body attractions (TBA) in the normal density region.
- S=-2 systems: For Ξ -hypernuclei the ΞN ESC08c interactions are not adequate for the Ξ -nucleus binding energies given by the emulsion data of the twin Λ -hypernuclei. As in the case of the Λ -hypernuclei, we expect a big role of the MPP+TBA contribution. For a clear analysis, however, the experimental data of B_{Ξ} are too scarce. On the other hand, MPP contributions are essential in the problem of Ξ -mixing in neutron star matter.

I.2 G-matrix ESC-models *

Partial wave contributions to $U_{\Sigma}(\rho_0)$

model	Т	${}^{1}S_{0}$	${}^{3}S_{1}$	${}^{1}P_{1}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	D	U_{Σ}	Γ_{Σ}
ESC08c	1/2	11.1	-22.0	2.4	2.1	-6.1	-1.0	-0.7		
	3/2	-12.8	30.7	-4.8	-1.8	6.0	-1.4	-0.2	+1.4	
ESC08c ⁺	1/2	11.1	-20.4	2.6	2.1	-5.8	-0.6	-0.8		
	3/2	-11.9	31.8	-4.2	-1.6	6.4	-0.4	-0.6	+7.9	

• MPP: $\Delta U_{\Sigma}(\rho_0) \approx +(4-6)$ MeV

• TNA: TNA(ΣNN = TNA(NNN); TNA($\Sigma NN \approx 0$): $U_{\Sigma} \rightarrow +17$ MeV !

• Nagels, Rijken, Yamamoto, arXiv:1501.06636 (2015)

- Limitation short-range repulsion: Experimental $\Sigma^+ P$ X-sections!
- Conflict with K^- -atomic data (Gal, Friedman, Mares):

(a) Experimental $\Sigma^+ P$ X-sections wrong (??)

(b) 3BF Σ NN repulsive (!?)

I.3 ESC-models: YY *

YY: The $\Lambda\Lambda$ -systems ESC2004/07

• Danyz et al (1963), Dalitz et al (1989):

 $\Xi^- + ^{12}C \rightarrow^{10}_{\Lambda\Lambda} Be + p + 2n$, $\Xi^- + ^{14}N \rightarrow^{10}_{\Lambda\Lambda} Be + t + p + n$

 $^{10}_{\Lambda\Lambda}Be \rightarrow^9_{\Lambda}Be + p + \pi^-$, $\Delta B_{\Lambda\Lambda} = 4.7 \pm 0.4$ MeV !?? • KEK-373: NAGARA-event (2001), Nakazawa et al

 $\Xi^- + {}^{12}C \rightarrow^6_{\Lambda\Lambda} He + {}^4He + t$,

 $^6_{\Lambda\Lambda}He \rightarrow^5_{\Lambda}He + p + \pi^-$, $\Delta B_{\Lambda\Lambda} = 1.01 \pm 0.28 \text{ MeV}$

 $^{10}_{\Lambda\Lambda}Be \rightarrow^9_{\Lambda}Be^* + p + \pi^-$, $\Delta B_{\Lambda\Lambda} \approx 1.0 \text{ MeV} \parallel$

• Soft-core models: NSC89, NSC97, ESC04, ESC08:

 $|V_{\Lambda\Lambda}(\epsilon)| < |V_{\Lambda N}(\epsilon)| < |V_{NN}(\epsilon)|$

 \rightarrow weak attraction/repulsion in $\Lambda N, \Xi N$ -sytems.

- ESC08c-model: $\Delta B_{\Lambda\Lambda} \approx 1.0 \text{ MeV} \parallel$
- Ξ-well-depth experiment WS -(14-16) MeV
- Ξ -cross sections small \Rightarrow well-depth problem!?

Deuteron D(Y = 0)-state in $\Xi N(I = 1, {}^{3}S_{1})$ in nuclear medium (?!)

EMMI-Turin, BB-interactions

- p.32/66

1.4 $\Lambda\Lambda$ and ΞN : Low-energy pars \star

 $S = -2, \Lambda\Lambda, \Xi N$: Low-energy parameters

• Effective -range parameters [fm]:

$$ESC08c: \quad a_{\Lambda\Lambda}({}^{1}S_{0}) = -0.44 , \ r_{\Lambda\Lambda}({}^{1}S_{0}) = 9.53, \quad (V_{[51]} + V_{[33]})/2,$$

$$a_{\Xi N}({}^{1}S_{0}, T = 0) = \text{coupled with } \Lambda\Lambda, \Sigma\Sigma$$

$$a_{\Xi N}({}^{1}S_{0}, T = 1) = +0.56 , \ r_{\Xi N}({}^{3}S_{1}) = -3.04 \quad (7V_{[51]} + 2V_{[33]})/9$$

$$a_{\Xi N}({}^{3}S_{1}, T = 1) = +0.14 , \ r_{\Xi N}({}^{3}S_{1}) = +41.0 \quad (17V_{[51]} + 10V_{[33]})/27$$

$$a_{\Xi N}({}^{3}S_{1}, T = 0) = -0.27 , \ r_{\Xi N}({}^{3}S_{1}) = -10.25 \quad (5V_{[51]} + 4V_{[33]})/9$$

$$a_{\Xi N}({}^{1}S_{0}, T = 2) = +9.47 , \ r_{\Xi N}({}^{3}S_{1}) = -48.92 \quad (5V_{[51]} + 4V_{[33]})/9$$

• ESC08c: $\Xi N({}^{3}S_{1}, T = 1)$ NO Strange Deuteron!

Th.A. Rijken Radboud University Nijmegen

EMMI-Turin, BB-interactions

– p.33/66

Dibaryon states Experimental: $H_2^- \star$

Experiment and Strange Deuteron H_2^-

- Rome-Saclay-Vanderbilt Collaboration: D'Agostini et al, Nucl. Phys. B209 (1982)
- Conclusion: No evidence for the existence of Q = -1, S = -2 dibaryonic states, in the mass range 2.1-2.5 GeV/c².
- Q: Conflict with $U_{\Xi} = -(3 14)$ MeV ?!
- J-PARC: E03, E07 experiments?!

- p.35/66

1.7 Three-body etc. Forces

Many-body: Three-body etc. Forces

- Two-body forces inadequate to explain:
 - 1 Nuclear saturation is notorious problem!
 - 2 U_{Σ} : $\Sigma^+ p$: SU(3)+X-sections \rightarrow limit on two-body repulsion \Rightarrow problem to obtain large $U_{\Sigma} \approx +15$ MeV.
 - 3 U_{Ξ} : Small ΞN scattering X-sections: how to obtain $U_{\Xi} \approx -14$ MeV? How to accomodate the Nakazawa et al Ξ -hypernuclei, produced by (K^-, K^+) -reactions with ${}^{12}C, {}^{16}O, {}^{14}N$?
 - 4 N-star: How to avoid softening of EoS for neutron star matter with hyperons, the so-called "hyperon-puzzle"?
- Sources three-body forces:
 - a ESC-model: meson-pair interactions \Rightarrow "Effective two-body" contributions for $U_{\Lambda}, U_{\Sigma}, U_{\Xi}$.
 - b Multi-pomeron interactions \Rightarrow extra repulsion for U_{Σ} , and a universal repulsion for any matter, i.e. no softening EoS.

ESC-models: S = -2, -3, -4 YY, YN

			S = -2 - 2	3,-4 Baryo	n-Bary	on Thresl	nolds		
ΛΛ		<u>344</u>	.4	904.4	NΞ	*			
ΞN	I = 0	0		972.3					_
$\Sigma\Sigma$				0					-
ΞN		0	588.7	972.3		ΛY_1^*	ΣY_1^*		_
$\Sigma\Lambda$	I = 1		0	645.0					-
$\Sigma\Sigma$				0					-
$\Sigma\Sigma$	I = 2			0					-
$\Lambda \Xi$ $\Sigma \Xi$	I = 1/2				·	698. 0	0	ΛΞ*	
ΞΞ	I=0,1								_
	Λ	$\Lambda \equiv N \downarrow \downarrow$	$\Sigma\Lambda$	$\Sigma\Sigma$	ΛΞ ↓	$\Sigma \Xi \downarrow$		EE ↓	
	2200		2300	2400		2500	2600	· · · ·	
	Th.A. Rijken	Ra	dboud U	niversity Nijm	egen)	EMM	I-Turin, BB-ir	iteractions	

– p.37/66

II.9 ESC08: $\Lambda/\Sigma\Xi$ - and $\Xi\Xi$ -systems \star

$\Lambda/\Sigma\Xi$, $\Xi\Xi$: PW's and SU3-irreps

 $SU(3)_f$ -contents of the various potentials on the isospin basis.

Space-spin antisymmetric states ${}^{1}S_{0}$, ${}^{3}P$, ${}^{1}D_{2}$,...

 $\Xi \to \Xi \qquad I = 1 \qquad V_{\Xi\Xi}(I=1) = V_{27}$

 $\Lambda \Xi \to \Lambda \Xi \qquad \qquad V_{\Lambda\Lambda} \left(I = \frac{1}{2} \right) = \left(9V_{27} + V_{8_s} \right) / 10$

 $\Lambda \Xi \to \Sigma \Xi \qquad I = \frac{1}{2} \qquad V_{\Lambda \Sigma} \left(I = \frac{1}{2} \right) = \left(-3V_{27} + 3V_{8_s} \right) / 10$

 $\Sigma \Xi \to \Sigma \Xi$ $V_{\Sigma\Sigma} \left(I = \frac{1}{2} \right) = \left(V_{27} + 9V_{8_s} \right) / 10$

 $\Sigma \Xi \to \Sigma \Xi \quad I = \frac{3}{2} \quad V_{\Sigma \Sigma} \left(I = \frac{3}{2} \right) = V_{27}$

III.10 ESC08: $\Lambda/\Sigma\Xi$ - and $\Xi\Xi$ -systems \star

 $\Lambda/\Sigma\Xi$, $\Xi\Xi$: PW's and SU3-irreps

 $SU(3)_f$ -contents of the various potentials on the isospin basis.

Space-spin symmetric states ${}^{3}S_{1}$, ${}^{1}P_{1}$, ${}^{3}D$,...

 $\Xi \Xi \to \Xi \Xi \quad I = 0 \quad V_{\Xi \Xi}(I = 0) = V_{10} (!)$

 $\Lambda \Xi \to \Lambda \Xi$ $V_{\Lambda\Lambda} \left(I = \frac{1}{2}\right) = \left(V_{10} + V_{8_a}\right)/2$

 $\Lambda \Xi \to \Sigma \Xi \quad I = \frac{1}{2} \quad V_{\Lambda \Sigma} \left(I = \frac{1}{2} \right) = \left(V_{10} - V_{8_a} \right) / 2$

 $\Sigma \Xi \to \Sigma \Xi$ $V_{\Sigma\Sigma} \left(I = \frac{1}{2} \right) = \left(V_{10} + V_{8_a} \right) / 2$

 $\Sigma \Xi \to \Sigma \Xi \quad I = \frac{3}{2} \quad V_{\Sigma\Sigma} \left(I = \frac{3}{2} \right) = V_{10^*}$ (!)

II.11 ESC08: $\Lambda/\Sigma\Xi$ - and $\Sigma\Xi$ -systems Low-energy pars \star $S = -3, \Lambda\Xi, \Sigma\Xi$: Low-energy parameters

• Effective -range parameters [fm]:

$$ESC08c: \quad a_{\Lambda\Xi}({}^{1}S_{0}) = -0.56 , \ r_{\Lambda\Xi}({}^{1}S_{0}) = 8.32, \qquad (9V_{27} + V_{8_{s}})/10, \ I = 1/2$$
$$a_{\Lambda\Xi}({}^{3}S_{1}) = +0.40 , \ r_{\Lambda\Xi}({}^{3}S_{1}) = 0.87, \qquad (V_{10} + V_{8_{a}})/2, \ I = 1/2$$
$$a_{\Sigma\Xi}({}^{1}S_{0}) = -1.71 , \ r_{\Sigma\Xi}({}^{1}S_{0}) = 3.71, \qquad V_{27}, \ I = 3/2$$
$$a_{\Sigma\Xi}({}^{3}S_{1}) = -0.85 , \ r_{\Sigma\Xi}({}^{3}S_{1}) = 8.02, \qquad V_{10^{*}}, \ I = 3/2.$$

 $S = -4, \Xi\Xi$: Low-energy parameters

ESC08c:

$$a_{\Xi\Xi}({}^{1}S_{0}) = -1.90 , r_{\Xi\Xi}({}^{1}S_{0}) = 4.28, \qquad V_{27} , I = 1$$
$$a_{\Xi\Xi}({}^{3}S_{1}) = +0.52 , r_{\Xi\Xi}({}^{3}S_{1}) = 2.74, \qquad V_{10} , I = 0$$

• ESC08c: ${}^{1}S_{0}$ -bound state? NO!

Nuclear+Hyperonic Matter

Nuclear and Hyperonic Matter

- Soft-core BB-interactions \Rightarrow Too soft EoS
- Appearance Hyperons \Rightarrow Neutron-star masses too small
- Conjecture: Universal repulsion in Baryonic matter

M I Gluon-exchange \Leftrightarrow Pomeron

Multiple Gluon-exchange QCD \Leftrightarrow Pomeron/Odderon

• Gluon-exchange \Leftrightarrow Pomeron-exchange

- Two/Even-gluon exchange \Leftrightarrow Pomeron
- Three/Odd-gluon exchange ⇔ Odderon

Multiple-gluon model: Low PR D12(1975), Nussinov PRL34(1975) Scalar Gluon-condensate: ITEP-school: $\langle 0|g^2 G^a_{\mu\nu}(0)G^{a\mu\nu}(0)|0\rangle = \Lambda^4_c,$ $\Lambda_c \approx 800 \text{ MeV}$ Landshoff, Nachtmann, Donnachie, Z.Phys.C35(1987); NP B311(1988): $\langle 0|g^2T[G^a_{\mu\nu}(x)G^{a\mu\nu}(0)]|0\rangle =$ $\Lambda_{c}^{4} f(x^{2}/a^{2}), a \approx 0.2 - 0.3 fm$ Triple-Pomeron: $g_{3P}/g_P \sim 0.15 - 0.20$, Kaidalov & T-Materosyan, NP B75 (1974) Quartic-Pomeron: $g_{4P}/g_P \sim 4.5$, Bronzan & Sugar, PRD 16 (1977)

V.2 Universal Three-body repulsion ⇔ Pomeron Universal Three-body repulsion ⇔ Pomeron-exchange

Multiple Gluon-exchange ⇔ Pomeron-exchange

Soft-core models NSC97, ESC04/08: (i) nuclear saturation, (ii) EOS too soft Nishizaki,Takatsuka,Yamamoto, PTP 105(2001); ibid 108(2002): NTYconjecture = universal repulsion in BB

Lagaris-Pandharipande NP A359(1981): medium effect \rightarrow TNIA,TNIR Rijken-Yamamoto PRC73: TNR $\Leftrightarrow m_V(\rho)$

TNIA ⇔ Fujita-Miyazawa (Yamamoto)

TNIR ⇔ Multiple-gluon-exchange ↔ Triple-Pomeron-model (TAR 2007) String-Junction-model (Tamagaki 2007)

Radboud University Nijmegen

EMMI-Turin, BB-interactions

- p.43/66

M3 Three-Body Forces: triple-pomeron repulsion

Triple-pomeron Universal Repulsive TBF:

Triple-pomeron Exchange-graph

• $V_{eff}(x_1, x_2) = 3\rho_{NM} \int d^3x_3 V(x_1, x_2, x_3)$

 $V_{eff} \Rightarrow 3g_{3P}g_P^3(\rho_{NM}/M^5)(m_P/\sqrt{2\pi})^3 \exp(-m_P^2 r^2/2) > 0(!)$

• $g_{3P}/g_P = (6-8)(r_0(0)/\gamma_0(0)) \approx (6-8) * 0.025 \quad \Leftarrow \text{Sufficient ?}$

- p.44/66

V.4 ESC08: Nuclear Matter, Saturation II

ESC08(NN): Saturation and Neutron matter

'Exp': $M/M_{\odot} = 1.44$, $\rho(cen)/\rho_0 = 3 - 4$, $B/A \sim 100 \text{ MeV}$

Schulze-Rijken, PRC84: $M/M_{\odot}(V_{BB}) \approx 1.35$

EMMI-Turin, BB-interactions

- p.45/66

V.5 $O_{16} - O_{16}$ Scattering \star

 $O_{16} - O_{16}$ Scattering with MPP+TNIA

– p.46/66

Radboud University Nijmegen

V.6 ESC08: Nuclear Matter, Saturation IV *

ESC08c(NN): Saturation and Neutron matter

Saturation curves for ESC08c(NN) (dashed), ESC08c(NN)+MPP (solid).

Right panel: neutron matter

Left panel: symm.matter, (NO TNIA(F-M,L-P)).

Dotted curve is UIX model of Gandolfi et al (2012).

EMMI-Turin, BB-interactions

- p.47/66

V.7 ESC08: Nuclear Matter, Saturation V *

ESC08c(NN): Neutron-star mass nuclear matter

Solution TOV-equation: Neutron-Star mass as a function of the radius R.

Dotted: MP0, no MPP Solid : MP1, triple+quartic MPP Dashed: MP2, triple MPP.

Yamamoto, Furumoto, Yasutake, Rijken

ESC08: MPP function: (i) EoS, NStar mass (ii) Nuclear saturation

(iii) HyperNuclear overbinding.

V.8 ESC08: Λ -binding energies \star

ESC08(NN+YN): Λ Binding Energy

With TNIA(F-M,L-P) + Triple/Quartic-pomeron Repulsion

Th.A. Rijken

EMMI-Turin, BB-interactions

- p.49/66

Radboud University Nijmegen

EMMI-Turin, BB-interactions

- p.50/66

V.10 ESC08: Nuclear and NS matter *

ESC08c(NN+YN): Symmetric and Neutron-star matter

Solution TOV-equation: Neutron-Star mass as a function of the radius R.

Dotted: MP0, no MPP Green : MPa⁺, trip+quart MPP Red : MPa, triple MPP.

Blue : MPb, triple MPP.

Yamamoto, Furumoto, Yasutake, Rijken

ESC08: MPP function: (i) EoS, NStar mass (ii) Nuclear saturation

(iii) HyperNuclear overbinding.

EMMI-Turin, BB-interactions

- p.51/66

V.11 ESC08: Nuclear and NS matter *

ESC08c(NN+YN): Symmetric and Neutron-star matter

Th.A. Rijken

Radboud University Nijmegen

EMMI-Turin, BB-interactions

- p.52/66

V.12 ESC08: Nuclear and NS matter *

ESC08c(NN+YN): Symmetric and Neutron-star matter

– p.53/66

V.13 ESC08: Nuclear and NS matter *

ESC08c(NN+YN): Symmetric and Neutron-star matter

Radboud University Nijmegen

EMMI-Turin, BB-interactions

- p.54/66

Conclusions and Status YN-interactions

Conclusions and Perspectives

- 1. High-quality Simultaneous Fit/Description $NN \oplus YN$, OBE, TME, MPE meson-exchange dynamics. $SU_f(3)$ -symmetry, (Non-linear) chiral-symmetry.
- 2. NN,YN,YY: Couplings $SU_f(3)$ -symmetry, 3P_0 -dominance QPC
 - Quark-core effect: ${}^{3}S_{1}(\Sigma N, I = 3/2)$ is more repulsive.
- 3. Scalar-meson nonet structure \Leftrightarrow Nagara $\Delta B_{\Lambda\Lambda}$ values.
- 4. NO S=-1 Bound-States, NO $\Lambda\Lambda$ -Bound-State.
- 5. NO S=-2,-3,-4 Bound-States.

Meson-exchange description of the YN/YY-interactions:

- a. Well-depths $U_{\Lambda}, U_{\Sigma}, U_{\Xi}$ significant contributions 3-body forces.
- c. Hyperons: NStar mass $M/M_{\odot} = (1.44 2.2) \Leftrightarrow$ Multi-Pomeron.

Application: Three-body forces !

Application: QPC educated guesses !?

Application: soft Q-Q and Q-Baryon interactions !?

– p.55/66

1 SU(3,C)-Symmetry Hadronen, BB-channels

Baryon-Baryon Interactions: SU(3,C)-Flavor Symmetry

- SU_F(4): 2 octets with (P,N)-base: SU(3,s) \oplus SU(3,c)
- Quark Level: SU(3,S)_{flavor} \Rightarrow SU(3,C)_{flavor} S-quark \Rightarrow C-quark
- $\Lambda \sim UDS \rightarrow \Lambda_c^+ \sim UDC$, $\Sigma^+ \sim UUS \rightarrow \Sigma_c^{++} \sim UUC$
- Mass differences \Leftrightarrow Broken SU(3,C)_{flavor} symmetry
- Baryon-Baryon Channels with "charm":

• SU(3,c): Gell-Mann-Nishina: $Q = I_3 + \frac{B+S+C}{2}$

EMMI-Turin, BB-interactions

– p.56/66

I.2 QPC: educated guesses

QPC guesses Meson-Baryon Couplings

Th.A. Rijken Radboud University Nijmegen

EMMI-Turin, **BB-interactions**

– p.57/66

V.3 CQM I

Quark momenta meson-exchange

Th.A. Rijken Radboud University Nijmegen

EMMI-Turin, BB-interactions

– p.58/66

CQM and Meson-exchange

• NN-meson Vertices Phenomenology: At the nucleon level the general 1/MM-structure vertices in Pauli-spinor space is dictated by Lorentz covariance:

$$\bar{u}(p',s')\Gamma u(p,s) = \chi_{s'}^{\prime\dagger} \left\{ \Gamma_{bb} + \Gamma_{bs} \frac{\boldsymbol{\sigma} \cdot \mathbf{p}}{E+M} - \frac{\boldsymbol{\sigma} \cdot \mathbf{p}'}{E'+M'} \Gamma_{sb} - \frac{\boldsymbol{\sigma} \cdot \mathbf{p}'}{E'+M'} \Gamma_{ss} \frac{\boldsymbol{\sigma} \cdot \mathbf{p}}{E+M} \right\} \chi_s$$

$$\approx \chi_{s'}^{\prime\dagger} \left\{ \Gamma_{bb} + \Gamma_{bs} \frac{(\boldsymbol{\sigma} \cdot \mathbf{p})}{2\sqrt{M'M}} - \frac{(\boldsymbol{\sigma} \cdot \mathbf{p}')}{2\sqrt{M'M}} \Gamma_{sb} - \frac{(\boldsymbol{\sigma} \cdot \mathbf{p}') \Gamma_{ss} (\boldsymbol{\sigma} \cdot \mathbf{p})}{4M'M} \right\} \chi_s$$

$$\equiv \sum_l c_{NN}^{(l)} O_l(\mathbf{p}', \mathbf{p}) (\sqrt{M'M})^{\alpha_l} \quad (l = bb, bs, sb, ss)$$

$$c_{NN}^{(l)} : 1, \ \boldsymbol{\sigma}, \ \boldsymbol{\sigma} \cdot \mathbf{p}, \ \boldsymbol{\sigma} \cdot \mathbf{p}', \ \boldsymbol{\sigma} \cdot \mathbf{p}' \times \mathbf{p}, \ \dots$$

Question: How is this structure reproduced using the coupling of the mesons to the quarks directly? In fact, we have demonstrated that for the CQM, i.e. $m_Q = \sqrt{M'M}/3$, the ratio's $c_{QQ}^{(l)}/c_{NN}^{(l)}$ can be made constant, i.e. independent of (l), for each type of meson. Then, by scaling the couplings the expansion coefficients can be made equal. (Q.E.D.)

V.5 CQM III

CQM and Axial-vector coupling

 Γ_5 -vertex: Impose conservation of the quark axial current:

$$J^{a}_{\mu} = g_{a}\bar{\psi}\gamma_{\mu}\gamma_{5}\psi + \frac{if_{a}}{\mathcal{M}}\partial_{\mu}(\bar{\psi}\gamma_{5}\psi), \quad \partial \cdot J^{A} = 0 \Rightarrow$$

 $f_a = \left(2m_Q \mathcal{M}/m_{A_1}^2\right) g_a$. With $m_{A_1} = \sqrt{2}m_\rho \approx 2\sqrt{2}m_Q$

$$J^{a}_{\mu} = g_{a} \left[\bar{\psi} \gamma_{\mu} \gamma_{5} \psi + \frac{i}{4m_{Q}} \partial_{\mu} (\bar{\psi} \gamma_{5} \psi) \right].$$

Inclusion f_a - and zero in form-factor gives for NNM- and QQM-coupling + folding:

$$\Gamma_{5,NN} \Rightarrow \chi_N^{\prime\dagger} \left[\boldsymbol{\sigma} + \frac{1}{4M'M} \left\{ 2\mathbf{q}(\boldsymbol{\sigma} \cdot \mathbf{q}) - \left(\mathbf{q}^2 - \mathbf{k}^2/4\right) \boldsymbol{\sigma} + \underline{i(\mathbf{q} \times \mathbf{k})} \right\} \right] \chi_N,$$

$$\Gamma_{5,QQ} \Rightarrow \chi_N^{\prime\dagger} \left[\boldsymbol{\sigma} + \frac{1}{4M'M} \left\{ 2\mathbf{q}(\boldsymbol{\sigma} \cdot \mathbf{q}) - \left(\mathbf{q}^2 - \mathbf{k}^2/4\right) \boldsymbol{\sigma} + \underline{9i(\mathbf{q} \times \mathbf{k})} \right\} \right] \chi_N$$

EMMI-Turin, BB-interactions

– p.60/66

V.6 CQM IV

CQM and Axial-vector coupling

Orbital Angular Momentum : $\Gamma = \sum_{i=1}^{3} \bar{u}_i \gamma_i \gamma_5 u_i = \langle \bar{u}_N \Sigma_N u_N \rangle$ measures the contribution of the quarks to the nucleon spin. In the quark-parton model: large portion of the nucleon spin due to orbital angular and/or gluonic contributions (see e.g. Leader & Vitale 1996) Therefore consider the additional interaction at the quark level

$$\Delta \mathcal{L}' = \frac{ig_a''}{\mathcal{M}^2} \epsilon^{\mu\nu\alpha\beta} \left[\bar{\psi}(x)\mathcal{M}_{\nu\alpha\beta}\psi(x) \right] A_\mu$$
$$\mathcal{M}_{\nu\alpha\beta} = \gamma_\nu \left(x_\alpha \frac{\partial}{\partial x^\beta} - x_\beta \frac{\partial}{\partial x^\alpha} \right).$$

The vertex for the NNA₁-coupling is given by

$$\langle p', s' | \Delta L' | p, s; k, \rho \rangle = \int d^4 x \langle p', s' | \Delta \mathcal{L}' | p, s; k, \rho \rangle \sim \varepsilon_\mu(k, \rho) \ \epsilon^{\mu\nu\alpha\beta}$$
$$\times \int d^4 x \ e^{-ik \cdot x} \ \langle p', s' | i\bar{\psi}(x)\gamma_\nu\left(x_\alpha\nabla_\beta - x_\beta\nabla_\alpha\right)\psi(x) | p, s \rangle$$

EMMI-Turin, BB-interactions

- p.61/66

,

V.7 CQM IV

CQM and Axial-vector coupling

The dominant contribution comes from $\nu = 0$. Evaluation:

$$\langle p', s' | \Delta L' | p, s; k, \rho \rangle \Rightarrow + (2\pi)^4 i \delta^{(4)} (p' - p - k) (2\alpha/3) g_a'' \varepsilon_m(k, \rho) \cdot \\ \times \sum_{i=1}^3 \left[u^\dagger(k_i', s') u(k_i, s) \right] \varepsilon(k, \rho) \cdot \mathbf{q} \times \mathbf{k} \ e^{-\alpha(\mathbf{q}^2 - 2\mathbf{q} \cdot \mathbf{Q})/2} \\ \Rightarrow \Delta \mathbf{\Gamma}_{5,QQ}'^m \propto \frac{g_a''}{M'M} (2R_N M/M_N)^2) \sqrt{\frac{E' + M'}{2M'}} \frac{E + M}{2M} \cdot \left[\chi_N'^\dagger \chi_N \right] (\mathbf{q} \times \mathbf{k})_m$$

Adjusting g''_a can give the spin-orbit of the NNA₁-vertex correctly: coupling to orbital angular momentum operator of the quarks in a baryon \Leftrightarrow "spin-crisis"!?

 Quark-parton picture: The spin-crisis in the quark-parton model revealed: the nucleon spin is mainly orbital and/or gluonic!
 Constituent-quark picture: nucleon spin is sum quark spins. Required is an extra spin-orbit coupling in the non-forward matrix element axial current to connect the QQ-axial-vector vertex with the nucleon level.

Th.A. Rijken

Radboud University Nijmegen

EMMI-Turin, BB-interactions

- p.62/66

V.8 Low-k Quark-interactions

BB-interactions \Rightarrow Quark-interactions

- Corollary: ESC-model NN, YN, YY, Hypernuclear data \Rightarrow QQ-meson couplings.
- Application: Low-k Q-Q and Q-Baryon meson-exch. interactions
- Generalized NJL-model: short-range approximation

$$e^{-k^2/\Lambda^2}(k^2+m^2)^{-1} \approx \exp(-k^2/U^2), U^2 = \Lambda^2 m^2/(\Lambda^2+m^2)$$

 \Rightarrow contact interaction in a dense quark gas.

• NJL: "contact-term" form

$$V_{QQ} = \sum_{i} f_i [\bar{\psi} \Gamma'_i \psi] [\bar{\psi} \Gamma_i \psi] = f_S \left[\bar{\psi} \psi \right]^2 + f_P \left[\bar{\psi} \gamma_5 \psi \right]^2 + \dots$$

• Treatment Quark-phase, Quark-Hatron-phase in e.g Nstars !?

EMMI-Turin, BB-interactions

– p.63/66

Nijmegen ESC-models

Reserve slights: Topics not addressed in this Talk

- A. YN data fit ESC08c .
- B. QCD, LQCD, SCQCD, and CQM-model .
- C. QQM-couplings \Leftrightarrow BBM-couplings.
- D. ESC-model \Leftrightarrow QQ,BQ-potentials.

QCD, LQCD, LFQCD, SCQCD, CQM

Th.A. Rijken

Radboud University Nijmegen

EMMI-Turin, BB-interactions

- p.65/66

Strong-Coupling Lattice QCD (SCQCD) *

Strong-Coupling Lattice QCD (SCQCD) \rightarrow

- Nuclear Phenomena: lattice spacing $a \ge 0.1$ fm, $g \ge 1.1$ \Rightarrow strong coupling expansion (might be) useful!
- Miller PRC39(1987), Kogut & Susskind PRD11(1975), Isgur & Paton, PR D31(1985)
- Implications SCQCD:
- (a) quarks different baryons can be treated distinguishable
- (b) baryons interact (dominantly) by mesonic exchanges
- (c) the gluons in wave-functions are confined in narrow tubes
- (d) quark-exchange is suppressed by overlap narrow flux-tubes
- Implications narrow tube picture SCQCD:
- (e) pomeron/odderon exchange: via narrow flux tubes

(f) pomeron & odderon couple to individual quarks of the baryons (Landshoff & Nachtmann)

• Constituent Quark-model (CQM): succesful!

(1) e.g. magnetic moments (2) derivation(?!) (Wilson et al, LFQCD)

• LQCD (Sasaki, Nemura, Inoue) \approx meson-exchange BB-irreps