EMMI workshop 2017.11.7

Hypernuclear physics with kaon (and pion) beams

Tohoku University H. Tamura

<u>Contents</u>

- 1. Introduction
- 2. S = -1 systems

 $\gamma\text{-ray}$ spectroscopy of Λ hypernuclei

 Σ –p scattering

3. S = -2 systems

 $\Lambda\Lambda$ hypernuclei, Ξ hypernuclei, Ξ atomic X-rays

4. Future Plan -- J-PARC Hadron Hall Extension

5. Summary

1. Introduction

Motivation: Strangeness makes nuclear physics deeper and wider

BB interactions

Unified understanding of BB forces by u,d ->u, d, s Short-range forces by quark pictures Test lattice QCD calculations

Impurity effect

in nuclear structure

Changes of size, deformation, clustering. Nuclear structure study using hyperons Behavior and properties of baryons

<u>in nuclei</u>

Baryon mixing 3-body forces Modification of baryons

Clues to understand hadrons and nuclei from quarks Cold and dense nuclear matter with strangeness

 μ_{Λ}

"Hyperon puzzle" in neutron stars

Hyperons (Λ at least) should appear at ρ ~ 2-3 ρ₀
 EOS's with hyperons or kaons too soft => cannot support M > 1.5 M_{sun}
 Heavy NS's (~2.0 M_{sun}) were observed.

NS radius (km)

=> Unknown repulsion at high ρ

- Strong repulsion in three-body force including hyperons, NNN, YNN, YYN, YYY ?
 - Chiral EFT is successful in NNN force. Extension to include hyperons requires high quality YN scattering data.
- Phase transition to quark matter ? (quark star or hybrid star)

We need to know YN, YY, K^{bar}N interactions both <u>in free space</u> and <u>in nuclear medium</u>

Are all hyperons bound in nuclei?

✓ Λ 40 Λ hypernuclei from ${}^{3}_{\Lambda}$ H to ${}^{208}_{\Lambda}$ Pb ~80 excited states have been experimentally produced.

 U_{Λ} = -30 MeV (c.f. U_{N} = -50 MeV)

-> Should appear $\rho \sim 2-3 \rho_0$ in neutron stars

× Σ No bound systems observed (one exception: ${}^{4}{}_{\Sigma}$ He) Potential looks strongly repulsive.

 $U_{\Sigma} \sim +30 \text{ MeV}$

- Does not appear in neutron stars How strong is the repulsion?
 ΣN scattering experiment necessary
- **?** Ξ No definite data exists

Comparison of hypernuclear production methods

K⁻ / π^+ beams (from protons) : (K⁻, π^-), (π^+ ,K⁺)

Secondary/weak beams ; thick targets

-> Limited resolution in reaction spectroscopy

Large cross section -> Less background, relatively large yield $n =>\Lambda$: energy calibration difficult

=> Coincidence experiments of Λ hyp. (γ -ray, weak decays) S= -2 systems by (K⁻,K⁺)

Electron (photon) beams: (e,e'K⁺)

Primary/strong beams; thin target -> Excellent resolution

 $p => \Lambda$: precise energy calibration

Less yield, accidental background

=> High resolution Λ hyp. spectroscopy, Precise mass determination

HI beams

Indirect reaction, ID from weak decay via invariant mass

-> Various hypernuclear species, Combinatorial background

=> Lifetime, Magnetic moment, Exotic hypernuclei

CERN-PS, BNL-AGS, KEK-PS, J-PARC

DAΦNE

Jlab, MAMI

GSI

LHC, RHIC

Comparison of hypernuclear production methods

2. S=-1 systems

γ -ray spectroscopy of Λ hypernuclei

 ΛN spin-dependent interaction strengths determined:

$$V_{\Lambda N}^{eff} = V_0(r) + \frac{V_{\sigma}(r) \,\overline{s}_A \,\overline{s}_N}{2} + \frac{V_{\Lambda}(r) \,\overline{l}_{AN} \,\overline{s}_A}{2} + \frac{V_N(r) \,\overline{l}_{AN} \,\overline{s}_N}{2} + \frac{V_T(r) \, S_{12}}{2}$$

 $\Delta = 0.33$ (A>10), 0.42 (A<10), $S_A = -0.01$, $S_N = -0.4$, T = 0.03 MeV

- Almost all these p-shell levels are reproduced by this parameter set. (D.J. Millener)
- Feedback to BB interaction models. Nijmegen ESC08 model is almost OK. (But ΛN-ΣN force is not well studied yet.)
 => go to s-shell and sd-shell

26

Charge Symmetry Breaking in A=4 hypernuclei

Previous theoretical works failed to understand it.

A.Gal suggests it can be explained with a YN force with different Σ - Λ coupling. A. Gal, PLB 744 (2015) 352, D. Gazda and A. Gal, PRL 116 (2016) 122501

Level scheme of ¹⁹ F (J-PARC E13 result)

Level scheme of ¹⁹ F (J-PARC E13 result)

tast The theoretical frameworks and the inputs (AN interaction slow strength and range) are good even for heavier hypernuclei.

2. S=-1 systems

Σ -p scattering

Baryon Baryon interaction by Lattice QCD

6 independent forces in flavor SU(3) symmetry

Slide by Koji Miwa

$\frac{\Sigma^{\pm} p \text{ Scattering Experiment}}{\text{J-PARC E40 (Miwa et al.)}}$

- 1.3 GeV/c π⁺⁻ p -> K⁺ Σ⁺⁻ reaction
- Σ⁺⁻ track not directly measured
- Measure proton momentum vector
 -> kinematically complete

 $\Rightarrow d\sigma/d\Omega \text{ for } \Sigma^+p, \ \Sigma^-p, \ \Sigma^-p->\Lambda n$ $(p_{\Sigma} = 400-700 \text{ MeV/c})$ => confirm quark Paul effect

Run from Feb. 2018 at J-PARC

Slide by K. Miwa

3. S=-2 Systems

Emulsion Results (KEK E373)

H. Takahashi et al., PRL 87 (2001) 212502

Λ - Λ is weakly attractive

 $-1.11 \pm 0.25 \,\mathrm{MeV}$

K. Nakazawa et al. PTEP 2015, 033D02

E-N is attractive

If U_{Ξ} is as deep as U_{Λ} (-30MeV), Ξ^{-} should appear first at $\rho \sim 2 \rho_{0}$ in NS.

-> "Hyperon puzzle" more difficult to solve?

More S=-2 events with emulsion

J-PARC E07 K. Nakazawa et al.

Collect ~10² $\Lambda\Lambda$ hypernuclear events from ~10⁴ Ξ_{stop}^{-}

- Confirm $\Lambda\Lambda$ int. and extract $\Lambda\Lambda-\Xi N$ effect
- More Ξ-nuclear events -> Ξ-N interaction

Measure Ξ^{-} -atomic X-rays (Ag, Br) with Ge detectors

- Shift and width of X-rays -> Ξ-nuclear potential
- Ξ^- absorbed events identified from emulsion image-> no background

4. Future Plan J-PARC Hadron Hall Extension

Extension Plans of J-PARC Hadron Hall

5. Summary

- Kaon(pion) beams, electron(photon) beams, heavy ion beams are all complementary to each other.
- Present status at J-PARC:
 - γ -ray spectroscopy of ${}^{4}_{\Lambda}$ He and ${}^{19}_{\Lambda}$ F confirmed CSB in A=4 and revealed spin-spin splitting in sd-shell hypernucleus
 - Ξ-nucleus bound systems have been observed in old emulsion ($\Xi^{-14}N$) and in ${}^{12}C(K^-,K^+) {}^{12}_{\Xi}Be$ spectrum
 - New emulsion experiment for more $\Lambda\Lambda$ and Ξ hypernuclei + Ξ -atomic X-rays has been successfully performed.
 - **\Sigma^{\pm}** p scattering experiment will start soon.
- J-PARC hadron Hall extension is planned to construct new kaon beam lines and a high-reolution pion beam line.