Unresolved Issues in Hypernuclear Physics

Avraham Gal, Hebrew University, Jerusalem

- Dynamics of Λ hypernuclei (^A_ΛZ)
 (i) s-shell few-body (ii) p-shell & beyond
- $\Lambda\Lambda$ hypernuclei: onset of $\Lambda\Lambda$ binding?
- Hyperons (Λ, Σ, Ξ) in nuclear matter & beyond
 (i) neutron stars: hyperon puzzle
 (ii) competition with K̄ condensation?
- Strangeness Nuclear Physics reviews:
 (i) Nucl. Phys. A, Vol. 881 (2012) & 954 (2016)
 A. Gal, J. Pochodzalla, Eds.
 (ii) Rev. Mod. Phys. 88 (2016) 035004
 A. Gal, E.V. Hungerford, D.J. Millener

 Λ hypernuclear dynamics

The lightest, s-shell, Λ hypernuclei

$^{\rm A}_{\Lambda}{\rm Z}$	T	$J^{\pi}_{ m g.s.}$	$B_{\Lambda} \ ({ m MeV})$	$J_{\rm exc.}^{\pi}$	$E_x (MeV)$
$^3_{\Lambda}{ m H}$	0	$1/2^{+}$	0.13(5)		
$^4_{\Lambda} \mathrm{H-}^4_{\Lambda} \mathrm{He}$	1/2	0^{+}	2.04(4) - 2.39(3)	1^{+}	1.09(2) - 1.406(3)
$^{5}_{\Lambda}\mathrm{He}$	0	$1/2^{+}$	3.12(2)		

- No ΛN and no Λnn bound state are expected.
- $\Delta B_{\Lambda}({}^{4}_{\Lambda}\text{He}-{}^{4}_{\Lambda}\text{H})=0.35(5)$ MeV: very large CSB.
- Recent A = 3, 4 few-body calculations:
- A. Nogga, NPA 914 (2013) 140 Faddeev & Faddeev-Yakubovsky (chiral LO & NLO).
- E. Hiyama et al., PRC 89 (2014) 061302(R) Jacobi-coordinates Gaussian basis (Nijmegen soft-core).
- R. Wirth et al., PRL 113 (2014) 192502.
 D. Gazda, A. Gal, PRL 116 (2016) 122501. ab-initio Jacobi-NCSM (chiral LO).

$^{3}_{\Lambda}$ H lifetime puzzle

The weakly-bound ${}^{3}_{\Lambda}$ H, B_{Λ} =0.13±0.05 MeV, expected to have lifetime within a few % of the free Λ lifetime. Recent heavy-ion ${}^{3}_{\Lambda}$ H production experiments yield lifetimes shorter by $\approx 30\%$. ALICE, PLB 754 (2016) 360.

Brief revie	w of	lifetime	e calculations
Reference	Method	\mathbf{R}_3	$\Gamma(^{3}_{\Lambda}\mathbf{H}, \mathbf{J}=\frac{1}{2}, \mathbf{T}=0)/\Gamma_{\Lambda}$
Experiment	wo. av.	$0.35{\pm}0.04$	$1.22{\pm}0.07$
Dalitz (1966)	closure		$1.05{\pm}0.01$
Congleton (1992)	$\Lambda \mathbf{d} \mathbf{w.f.}$	$0.33{\pm}0.02$	1.12
Kamada (1998)	Fad.	0.379	1.03

- $\mathbf{R}_3 = \Gamma(^3_{\Lambda}\mathbf{H} \to \pi^- + {}^3\mathbf{H}\mathbf{e})/\Gamma(^3_{\Lambda}\mathbf{H} \to \pi^- + \operatorname{all})$ favors $\mathbf{J} = \frac{1}{2}$ over $\mathbf{J} = \frac{3}{2}$.
- Closure: $\Gamma({}^{3}_{\Lambda}\mathbf{H}, \mathbf{J} = \frac{1}{2}, \mathbf{T} = \mathbf{0})/\Gamma_{\Lambda} = \mathbf{1} + \mathbf{0}.\mathbf{1}4\sqrt{B_{\Lambda}}.$
- A bound, isomeric ${}^{3}_{\Lambda}H(J={}^{3}_{2},T=0)$ (unlikely) would decay much slower than a free Λ .
- A bound ${}^{3}_{\Lambda}$ H(J= $\frac{1}{2}$,T=1), analog of Λ nn, would decay to Λ d or by γ (M1) to ${}^{3}_{\Lambda}$ H(J= $\frac{1}{2}$,T=0).

${}^4_{\Lambda}$ H & ${}^4_{\Lambda}$ He lifetimes

$$\Gamma(^{4}_{\Lambda}\mathrm{H})/\Gamma_{\Lambda} \approx \frac{3}{2} \times (\frac{2}{3} \times 0.7 + 1 \times 0.3) + 0.25 = 1.40$$

 $\Gamma(^{4}_{\Lambda}\mathrm{He})/\Gamma_{\Lambda} \approx \frac{3}{2} \times (\frac{1}{3} \times 0.7 + 1 \times 0.3) + 0.25 = 1.05$

Input: $\frac{3}{2}$ for nuclear structure, $\mathbf{R}_4 = \mathbf{0.7}$ $\frac{2}{3}$ & $\frac{1}{3}$ for either π^- or π^0 with ⁴He, $\Gamma_{n.m.}/\Gamma_{\Lambda} \approx \mathbf{0.25}$

 $\Rightarrow \tau(^{4}_{\Lambda}H) \approx 190 \text{ ps}, \quad \tau(^{4}_{\Lambda}He) \approx 250 \text{ ps}$ in rough agreement with measured lifetimes.

• Looks like Lifetime Puzzle is limited to ${}^{3}_{\Lambda}$ H.

T=1/2 hyperon-nucleon interaction

LO χ EFT YN model: PS meson exchange + 5 contact terms [Polinder-Haidenbauer-Meißner, NPA 779, 244 (2006)].

 $\Lambda N-\Sigma N$ ($\Lambda \Sigma$) coupling provides $\approx 1/3$ of E_x ⁴/_{Λ}He levels severely underbound without $\Lambda \Sigma$ coupling D. Gazda et al., FBS 55, 857 (2014) R. Wirth et al., PRL 113, 192502, using LO chiral potentials [H. Polinder et al., NPA 779, 244 (2006)].

FINUDA+Gal (2012) [PRL 108, 042501; NPA 881, 269]

• $B_{\Lambda}({}^{6}_{\Lambda}\mathbf{H})$ & $\Delta E(1^{+}-0^{+})$ constrain $\Lambda N \leftrightarrow \Sigma N$ in n-rich ${}^{A}_{\Lambda}Z$, A. Gal, D.J. Millener, PLB 725 (2013) 445.

The ${}^{4}_{\Lambda}$ H- ${}^{4}_{\Lambda}$ He complex & CSB since 2015 MAMI's A1, ${}^{4}_{\Lambda}$ H \rightarrow ⁴He+ π^{-} , PRL 114 (2015) 232501 J-PARC's E13, 4 He($K^{-}, \pi^{-}\gamma$), PRL 115 (2015) 222501

CSB due to Λ - Σ^0 mixing, strongly spin dependent, dominantly in $0^+_{\text{g.s.}}$, large w.r.t. \approx -70 keV in ³H-³He. Remeasure ${}^4_{\Lambda}\text{He}_{\text{g.s.}}$ (E13 \rightarrow E63). Relating Λ - Σ^0 CSB mixing to $\Lambda\Sigma$ SI coupling

Dalitz-von Hippel (1964): "applies to any isovector meson exchange, π , ρ ..." & also to χ EFT contact interactions. $\langle N\Lambda | V_{\Lambda N}^{\text{CSB}} | N\Lambda \rangle = -0.0297 \tau_{Nz} \frac{1}{\sqrt{3}} \langle N\Sigma | V^{\text{SI}} | N\Lambda \rangle.$ Applied systematically by A. Gal, PLB 744 (2015) 352 D.Gazda, A.Gal (2016): PRL 116 122501; NPA 954 161. Latest summary in arXiv:1708.04791.

Recent NCSM calculations

- No-Core Shell-Model (NCSM) 4-body calculation in a translationally invariant Jacobi-coordinate harmonic oscillator (HO) basis, antisymmetrized for nucleons.
- χ EFT interactions: N3LO NN & N2LO NNN, LO YN (Bonn-Jülich) with CSB introduced by relating $\Lambda - \Sigma^0$ mixing to $\Lambda N - \Sigma N$ strong-interaction coupling.
- Diagonalize Hamiltonian in finite four-body HO bases, admitting all HO excitation energies $N\hbar\omega$, $N\leq N_{max}$. Extrapolated energy values $E(\omega)$, $N_{max}\rightarrow\infty$, obtained by fitting an exponential function to $E(N_{max}, \omega \text{ fixed})$ sequences in the vicinity of the variational minima with respect to ω .

D. Gazda & A. Gal (2016): PRL 116, 122501 & NPA 954, 161

 ${\bf E}_x(0^+ \to 1^+)$ in LO $\chi {\bf EFT}$ for $^4_\Lambda {\bf H}$ & $^4_\Lambda {\bf He}$

- N3LO NN + N2LO NNN + LO/NLO YN
- $E_x^{CS} = 1.3^{+0.5}_{-0.4}$ MeV (LO, Gazda-Gal with CSB) Nogga: 1.05±0.25 (LO), 0.71±0.04 (NLO)
- $E_x^{CS}(NLO) \ll E_x^{CS}(exp) \approx 1.25 \text{ MeV}$

NCSM HO $\hbar\omega$ dependence of $\Delta B_{\Lambda}(^{4}_{\Lambda}He-^{4}_{\Lambda}H)$ for 0⁺ & 1⁺. Note \pm sign pattern resulting from $^{1}S_{0}$ Λ - Σ contact term dominance at LO [see OPE discussion NPA 954 (2016) 161]. Λ =600 MeV: $\Delta E_{\gamma} = \Delta(\Delta B_{\Lambda}) = 0.33 \pm 0.03$ MeV compared to a measured $\Delta E_{\gamma} = 0.32 \pm 0.02$ MeV.

CSB in p-shell hypernuclei

E. Botta, T. Bressani, A. Feliciello, NPA 960 (2017) 165-179 CSB appears to be much weaker in the A=7 isotriplet than in the A=4 isodoublet provided counter experiments are not compared directly with old emulsion results.

Level schemes of Λ hypernuclei from γ -ray measurements H. Tamura et al., Nucl. Phys. A 835 (2010) 3 [HYP09], updated at HYP12 Λ spin-orbit splitting: 150 keV in $^{13}_{\Lambda}$ C & related 43 keV in $^{9}_{\Lambda}$ Be

p-shell Λ hypernuclei

 $V_{\Lambda N} = V_0(r) + V_\sigma(r) \ s_N \cdot s_\Lambda + V_{LS}(r) \ l_{N\Lambda} \cdot (s_\Lambda + s_N) + V_{ALS}(r) \ l_{N\Lambda} \cdot (s_\Lambda - s_N) + V_T(r) \ S_{12}$

For $p_N s_Y$: $V_{\Lambda N} = V + \Delta s_N \cdot s_\Lambda + S_\Lambda l_N \cdot s_\Lambda + S_N l_N \cdot s_N + T S_{12}$

R.H Dalitz, A. Gal, Ann. Phys. 116 (1978) 167
D.J. Millener, A. Gal, C.B. Dover, R.H. Dalitz, PRC 31 (1985) 499

$N\Lambda$ - $N\Lambda$	$ar{V}$	Δ	S_{Λ}	S_N	T	from
A = 7 - 9	(-1.32)	0.430	-0.015	-0.390	0.030	fit
A = 11 - 16	(-1.32)	0.330	-0.015	-0.350	0.024	fit
$N\Lambda$ - $N\Sigma$	1.45	3.04	-0.085	-0.085	0.157	input

(in MeV) D.J. Millener, Nucl. Phys. A 804 (2008) 84

Doublet spacings in p-shell hypernuclei (in keV)

D.J. Millener, NPA 881 (2012) 298

	J_u^{π}	J_l^{π}	$\Lambda\Sigma$	Δ	S_{Λ}	S_N	T	$\Delta E^{\rm th}$	ΔE^{\exp}
$^{7}_{\Lambda}{ m Li}$	$3/2^{+}$	$1/2^{+}$	72	628	-1	-4	-9	693	692
$^{7}_{\Lambda}{ m Li}$	$7/2^{+}$	$5/2^{+}$	74	557	-32	-8	-71	494	471
$^{8}_{\Lambda}{ m Li}$	2^{-}	1-	151	396	-14	-16	-24	450	(442)
$^9_{\Lambda}{ m Be}$	$3/2^{+}$	$5/2^{+}$	-8	-14	37	0	28	44	43
$^{11}_{\Lambda}\mathrm{B}$	$7/2^{+}$	$5/2^{+}$	56	339	-37	-10	-80	267	264
$^{11}_{\Lambda}{ m B}$	$3/2^{+}$	$1/2^{+}$	61	424	-3	-44	-10	475	505
$^{12}_{\Lambda}{ m C}$	2^{-}	1-	61	175	-22	-13	-42	153	161
$^{15}_{~\Lambda}{ m N}$	$3/2_2^+$	$1/2_{2}^{+}$	65	451	-2	-16	-10	507	481
$^{16}_{\Lambda}{ m O}$	1-	0-	-33	-123	-20	1	188	23	26
$^{16}_{\Lambda}\mathrm{O}$	2-	1_{2}^{-}	92	207	-21	1	-41	248	224

 Λ spin dependence (Δ, S_{Λ}, T) determined by doublet spacings

p-shell CSB contributions in $(\Lambda \Sigma)_e$ coupling model

$^{A}_{\Lambda}\mathrm{Z}_{>}-^{A}_{\Lambda}\mathrm{Z}_{<}$	I_C, J_C^{π}	P_{Σ}	ΔT_{YN}	ΔV_C	ΔV_{YN}	$\Delta B_{\Lambda}^{\mathrm{calc}}$	$\Delta B_{\Lambda}^{\exp}$ [D]
pairs		(%)	(keV)	(keV)	(keV)	(keV)	(keV)
$^4_{\Lambda} \mathrm{He-}^4_{\Lambda} \mathrm{H}$	$\frac{1}{2}, 0^+$	0.72	39	-45	232	226	$+350\pm60$
$^7_{\Lambda}\mathrm{Be-}^7_{\Lambda}\mathrm{Li}^*$	$1, \frac{1}{2}^+$	0.12	3	-70 [HYMK]	50	-17	-100 ± 90
$^8_\Lambda { m Be-}^8_\Lambda { m Li}$	$\frac{1}{2}, 1^{-}$	0.20	11	-81 [HKMYY]	119	+49	$+40\pm60$
$^9_{\Lambda}\mathrm{B-}^9_{\Lambda}\mathrm{Li}$	$1, \frac{3}{2}^+$	0.23	10	$-145 \; [M]$	81	-54	-210 ± 220
$^{10}_{\Lambda}\mathrm{B-}^{10}_{\Lambda}\mathrm{Be}$	$\frac{1}{2}, 1^{-}$	0.053	3	-156 [M]	17	-136	-220 ± 250

Davis, NPA 754 (2005) 3c. Millener, unpublished (2015).

Hiyama Yamamoto Motoba Kamimura PRC 80 (2009) 054321.

Hiyama Kamimura Motoba Yamada Yamamoto, PRC 66 (2002) 024007. Negligible ΔT_{YN} no longer cancels ΔV_C . ΔV_{YN} is smaller than in s shell and, except for A=8, is dominated by the larger-size negative ΔV_C , so CSB becomes negative in the p shell as suggested by the data.

	$^{7}_{\Lambda}{ m Li}$	$^{8}_{\Lambda}{ m Li}$	$^9_{\Lambda}{ m Be}$	$^9_{\Lambda}{ m Li}$	$^{10}_{\Lambda}{ m B}$	$^{11}_{\Lambda}{ m B}$	$^{12}_{\Lambda}\mathrm{B}$	$^{13}_{\Lambda}{ m C}$	$^{15}_{~\Lambda}\mathrm{N}$	$^{16}_{\Lambda}{ m N}$
keV	$1/2^{+}$	1-	$1/2^{+}$	$3/2^{+}$	1-	$5/2^{+}$	1-	$1/2^{+}$	$3/2^{+}$	1-
$\Lambda\Sigma$	78	160	4	183	35	66	103	28	59	62
Δ	419	288	0	350	125	203	108	-4	40	94
S_{Λ}	0	-6	0	-10	-13	-20	-14	0	12	6
S_N	94	192	207	434	386	652	704	841	630	349
T	-2	-9	0	-6	-15	-43	-29	-1	-69	-45
sum	589	625	211	952	518	858	869	864	726	412
Exp	5.58	6.80	6.71	8.50	8.89	10.24	11.37	11.69		13.76
\bar{V}	-0.94	-1.02	-0.84	-1.06	-1.05	-1.04	-1.05	-0.96		-0.93

YN interaction contributions to g.s. binding energies

 $B_{\Lambda}^{\exp}(\text{g.s.}) = [B_{\Lambda}^{\exp}({}_{\Lambda}^{5}\text{He}) = 3.12 \pm 0.02 \text{ MeV}] - (A - 5)\overline{V} + \text{'sum'}$

Note ${}^{9}_{\Lambda}$ Be anomaly. Improve fit by adding a ΛNN term see Millener-Gal-Dover-Dalitz, PRC 31 (1985) 499

$\Lambda\Lambda$ hypernuclei

Nagara event, ${}_{\Lambda\Lambda}{}^{6}$ He, (KEK-E373) PRL 87 (2001) 212502 $B_{\Lambda\Lambda}({}_{\Lambda\Lambda}{}^{6}$ He_{g.s.})=6.91±0.16 MeV, unambiguously determined.

- A: Ξ^- capture $\Xi^- + {}^{12}C \rightarrow {}^{6}_{\Lambda\Lambda}He + t + \alpha$
- B: weak decay ${}_{\Lambda\Lambda}{}^{6}\text{He} \rightarrow {}_{\Lambda}{}^{5}\text{He} + p + \pi^{-}$ (no ${}_{\Lambda\Lambda}{}^{6}\text{He} \rightarrow {}^{4}\text{He} + H$)
- C: ${}_{\Lambda}^{5}$ He nonmesic weak decay to 2 Z=1 recoils + n.

The elusive H dibaryon Jaffe's H(uuddss) [PRL 38 (1977) 195] predicted stable

 $\mathbf{H} \sim \mathcal{A}[\sqrt{1/8} \Lambda \Lambda + \sqrt{1/2} N \Xi - \sqrt{3/8} \Sigma \Sigma,]_{I=S=0}$

- To forbid ${}^{6}_{\Lambda\Lambda}$ He \rightarrow H+⁴He, impose B(H) \leq 7 MeV. A bound H most likely overbinds ${}^{6}_{\Lambda\Lambda}$ He [Gal, PRL 110 (2013) 179201].
- Weakly bound H in Lattice QCD calculations. SU(3)_f breaking pushes it to ≈NΞ threshold,
 ≈26 MeV in ΛΛ continuum [HALQCD, NPA 881 (2012) 28; Haidenbauer & Meißner, ibid. 44].
- Experimental searches also rule out a bound H. J-PARC E42 will search for H in (K^-, K^+) .

Faddeev calc. by I.N. Filikhin, A. Gal, NPA 707 (2002) 491 $\Delta B_{\Lambda\Lambda}({}_{\Lambda\Lambda}{}^{6}\text{He}) \equiv B_{\Lambda\Lambda}({}_{\Lambda\Lambda}{}^{6}\text{He}) - 2B_{\Lambda}({}_{\Lambda}{}^{5}\text{He}) \approx 0.7 \text{ MeV}$ implying that ${}_{\Lambda\Lambda}{}^{5}\text{H} \& {}_{\Lambda\Lambda}{}^{5}\text{He}$ are also bound. With ${}_{\Lambda\Lambda}{}^{4}\text{H}$ likely unbound, $\Lambda\Lambda$ binding onset is ${}_{\Lambda\Lambda}{}^{5}\text{H} \& {}_{\Lambda\Lambda}{}^{5}\text{He}$.

Binding energy consistency of $\Lambda\Lambda$ hypernuclei

event	${}^{A}_{\Lambda\Lambda}Z$	$B^{ m exp}_{\Lambda\Lambda}$	$B^{\mathrm{CM}}_{\Lambda\Lambda}$ †	$B^{ m SM}_{\Lambda\Lambda}$ ††
E373-Nagara	$^{6}_{\Lambda\Lambda}{ m He}$	6.91 ± 0.16	6.91 ± 0.16	6.91 ± 0.16
E373-DemYan	$^{10}_{\Lambda\Lambda}{ m Be}$	$14.94 \pm 0.13 \ddagger$	14.74 ± 0.16	14.97 ± 0.22
E373-Hida	$^{11}_{\Lambda\Lambda}{ m Be}$	20.83 ± 1.27	18.23 ± 0.16	18.40 ± 0.28
E373-Hida	$^{12}_{\Lambda\Lambda}\mathrm{Be}$	22.48 ± 1.21	—	20.72 ± 0.20
E176	$^{13}_{\Lambda\Lambda}\mathrm{B}$	23.4 ± 0.7 *	—	23.21 ± 0.21
† E. Hiyama	et al.,	PRL 104 (2010	D) 212502, & :	refs. therein

- †† A. Gal, D.J. Millener, PLB 701 (2011) 342, assuming that $\langle V_{\Lambda\Lambda} \rangle \approx \Delta B_{\Lambda\Lambda} ({}_{\Lambda\Lambda}{}^{6}\text{He}) = 0.67 \pm 0.16 \text{ MeV}$
- ‡ Assuming production in $^{10}_{\Lambda\Lambda}$ Be non g.s. 2⁺(3.04 MeV)
- * Assuming ${}^{13}_{\Lambda\Lambda}B_{g.s.}$ decay to ${}^{13}_{\Lambda}C^*(5/2^+, 3/2^+; 4.8 \text{ MeV}) + \pi^-$
- Unassigned Hida event [PTPS 185 (2010) 335]
- $B_{\Lambda\Lambda}^{\rm SM} \approx B_{\Lambda\Lambda}^{\rm CM}$, but SM spans a wider A range

Other Strange Hadrons in Matter

Observation of Λ single-particle states

H. Hotchi et al., Phys. Rev. C 64 (2001) 044302 $B_{\Lambda} = 23.11 \pm 0.10$ MeV T. Motoba, D.E. Lanskoy, D.J. Millener, Y. Yamamoto, NPA 804 (2008) 99: negligible Λ spin-orbit splittings, 0.2 MeV for $1f_{\Lambda}$

Update: Millener, Dover, Gal PRC 38, 2700 (1988)

Woods-Saxon V = 30.05 MeV, r = 1.165 fm, a = 0.6 fm

Textbook example of shell model at work. Skyrme-Hartree-Fock studies suggest ΛNN repulsion.

Hyperon puzzle: QMC calculations

- Adding ΛNN stiffens EOS of neutron stars.
- YY add $0.3 M_{\odot}$ to M_{max} (Rijken-Schulze 2016).

Hyperon-Nucleus potentials from LQCD

 Σ – repulsion, Ξ – weak attraction

Do antikaons condense on earth?

D. Gazda, E. Friedman, A. Gal, J. Mareš, PRC 77 (2008) 045206 Saturation of $B_{\bar{K}}(\kappa)$ in RMF for multi- K^{-40} Ca nuclei Vector-meson repulsion among \bar{K} mesons $B_{\bar{K}}(\kappa \to \infty) << (m_K + M_N - M_\Lambda) \approx 320$ MeV

...and adding Λ hyperons

Gazda-Friedman-Gal-Mareš, Phys. Rev. C 80 (2009) 035205 Saturation of $B_{\bar{K}}(\kappa)$ in RMF for ²⁰⁸Pb + $\eta\Lambda$ + κK^- Hyperons dominate stable self-bound strange matter No kaon condensation on earth...

Summary & Outlook

- ΛN hypernuclear spin dependence deciphered.
- How small is Λ spin-orbit splitting and why?
- Role of 3-body ΛNN interactions in hypernuclei & neutron stars?
- Resolve the ${}^{3}_{\Lambda}$ H lifetime puzzle from HIC.
- Re-measure the ${}^{4}_{\Lambda}H {}^{4}_{\Lambda}He$ complex (E13 \rightarrow E63).
- Search for n-rich ${}^{A}_{\Lambda}Z$; ${}^{6}_{\Lambda}H$? (E10).
- Repulsive Σ-nuclear interaction; how strong? (relevant to neutron star matter & to strange hadronic matter).
- Search for H dibaryon in (K^-, K^+) (E42).

- Onset of $\Lambda\Lambda$ binding: ${}_{\Lambda\Lambda}{}^{4}H$ or ${}_{\Lambda\Lambda}{}^{5}Z$? (E07).
- Shell model works well for g.s. beyond ${}_{\Lambda\Lambda}{}^{6}$ He.
- Study excited states by slowing down Ξ^- from $\bar{p}p \rightarrow \Xi^- \bar{\Xi}^+$ in FAIR (PANDA).
- Do Ξ hyperons quasi-bind in nuclei $(\Xi N \to \Lambda \Lambda)$? No quasibound Ξ established yet (E05).
- Onset of Ξ stability: ${}_{\Lambda\Xi}{}^{6}$ He or ${}_{\Lambda\Lambda\Xi}{}^{7}$ He?
- No \overline{K} condensation in self-bound matter. { N, Λ, Ξ } provides Strange-Hadronic-Matter g.s.

Thanks for your attention!

Related material

J-PARC SNP Experiments: Stage-1 Stage-2 Day-1

- E03: X rays from Ξ^- atoms
- **E05:** ${}^{12}C(K^-, K^+){}^{12}_{\Xi}Be$ **textBlue**
- E07: S=-2 emulsion-counter studies
- E10: DCX studies of neutron-rich ${}^{A}_{\Lambda}Z$
- E13: γ -ray spectroscopy of Λ hypernuclei \rightarrow E63
- E15: search for K^-pp in ${}^{3}\text{He}(K^-, n)$
- E18: $^{12}_{\Lambda}$ C weak decays
- E19: search for Θ^+ pentaquark in $\pi^- p \to K^- X$
- E22: weak interactions in ${}^{4}_{\Lambda}H {}^{4}_{\Lambda}He$
- E27: search for K^-pp in $d(\pi^+, K^+)$
- E31: study of $\Lambda(1405)$ by in-flight $d(K^-, n)$
- E40: measurement of Σp scattering
- E42: search for *H*-dibaryon in (K^-, K^+) nuclear reactions
- E62: precision spectroscopy of X-rays from kaonic atoms with TES

ΛN - ΣN coupling in NSC97 models Akaishi et al., PRL 84 (2000) 3539

Schematic $\Lambda\Sigma$ coupling model ($1s_{\Lambda} \rightarrow 1s_{\Sigma}$ & same nucleon orbital wavefunction)

- $\Lambda\Sigma$ coupling: $\sqrt{4/3} t_N \cdot t_{\Lambda\Sigma} (V_{\Lambda\Sigma} + s_N \cdot s_Y \Delta_{\Lambda\Sigma})$ leading to Fermi (F) & Gamow-Teller (GT) nuclear transition matrix elements.
- The important ΛΣ coupling matrix elements involve
 Σ and Λ hyperons coupled to the same nuclear core, and nuclear states connected by a large GT matrix element to the dominant core state.
- Sizable $\Lambda\Sigma$ matrix elements arise in realistic models, see Millener, Lect. Notes. Phys. 724 (2007) 31.
- $V_{\Lambda\Sigma} = 2.96 \ (3.35), \quad \Delta_{\Lambda\Sigma} = 5.09 \ (5.76) \text{ MeV},$ for s-shell baryons in simulated models NSC97e(f).

Schematic model A=4 matrix elements

$$|^{4}_{\Lambda} Z(T = 1/2)\rangle = \alpha s^{3} s_{\Lambda} + \beta s^{3} s_{\Sigma}$$
$$v_{\Lambda\Sigma} = \sqrt{4/3} \vec{t}_{N} \cdot \vec{t}_{\Lambda\Sigma} (V_{\Lambda\Sigma} + \Delta_{\Lambda\Sigma} \vec{s}_{N} \cdot \vec{s}_{Y})$$
$$v(0^{+}_{g.s.}) = V_{\Lambda\Sigma} + \frac{3}{4} \Delta_{\Lambda\Sigma}, \quad v(1^{+}_{exc}) = V_{\Lambda\Sigma} - \frac{1}{4} \Delta_{\Lambda\Sigma}$$
$$\delta E_{\downarrow}(J^{+}) = v^{2} (J^{+}) / (M_{\Sigma} - M_{\Lambda})$$

NSC97	$V_{\Lambda\Sigma}$	$\Delta_{\Lambda\Sigma}$	$\delta E_{\downarrow}(0_{\rm g.s.}^+)$	$\delta E_{\downarrow}(1_{\rm exc}^+)$	$\Delta E_{\Lambda\Sigma}$	ΔE	$C(0_{\rm g.s.}^+ - 1_{\rm g.s.}^+)$	$^{+}_{\mathrm{exc}})$
model	as calculated in models $(\Lambda\Sigma)_{\rm e,f}$						AHSM	NAS
$\rm NSC97_e$	2.96	5.09	0.574	0.036	0.539	0.75	0.89	1.13
$\rm NSC97_{f}$	3.35	5.76	0.735	0.046	0.689	1.10	1.48	1.51

Nogga, Kamada, Glöckle, PRL 88 (2002) 172501. Akaishi, Harada, Shinmura, Myint, PRL 84 (2000) 3539. Nemura, Akaishi, Suzuki, PRL 89 (2002) 142504.