

The Hypertriton as an Efimov State

H.-W. Hammer

Institut für Kernphysik, TU Darmstadt and Extreme Matter Institute EMMI

Bundesministerium für Bildung und Forschung Deutsche Forschungsgemeinschaft

DFG

"Anti-matter, hyper-matter and exotica production at the LHC" Turin, Italy, Nov. 6-10, 2017

Outline

- Threshold bound states and the unitary limit
- Limit cycles and Efimov physics
- Hypertriton
- Factorization in break-up and recombination
- Summary and outlook

Collaborators: F. Hildenbrand, ...

Review articles: HWH, Ji, Phillips, J. Phys. G **44** (2017) 103002 Braaten, HWH, Phys. Rep. **428** (2006) 259

- Consider system with short-ranged, resonant interactions
- Unitary limit: $a \to \infty$, $\ell \sim r_e \to 0$ (cf. Bertsch problem, 2000)

- Consider system with short-ranged, resonant interactions
- Unitary limit: $a o \infty$, $\ell \sim r_e o 0$ (cf. Bertsch problem, 2000)

Scattering amplitude scale invariant, saturates unitarity bound

- Consider system with short-ranged, resonant interactions
- Unitary limit: $a o \infty$, $\ell o 0$ (cf. Bertsch problem, 2000)

$$\mathcal{T}_2(k,k) \propto \Big[\underbrace{k \cot \delta}_{-1/a + r_e k^2/2 + \dots} -ik\Big]^{-1} \implies i/k$$

Scattering amplitude scale invariant, saturates unitarity bound

- Consider system with short-ranged, resonant interactions
- Unitary limit: $a \to \infty$, $\ell \to 0$ (cf. Bertsch problem, 2000)

$$\mathcal{T}_2(k,k) \propto \Big[\underbrace{k \cot \delta}_{-1/a + r_e k^2/2 + \dots} -ik\Big]^{-1} \implies i/k$$

- Scattering amplitude scale invariant, saturates unitarity bound
- Use as starting point for description of few-body properties
 - Large scattering length: $|a| \gg \ell \sim r_e, l_{vdW}, ...$
 - Natural expansion parameter: $\ell/|a|$, $k\ell$,...
 - Universal dimer with energy $B_2 = -1/(ma^2)$ (a > 0)

size $\langle r^2 \rangle^{1/2} \sim a \quad \Rightarrow \quad {\rm halo\ state}$

- Consider system with short-ranged, resonant interactions
- Unitary limit: $a \to \infty$, $\ell \to 0$ (cf. Bertsch problem, 2000)
 - $\mathcal{T}_2(k,k) \propto \left[\underbrace{k \cot \delta}_{-1/a + r_e k^2/2 + \dots} -ik\right]^{-1} \implies i/k$
 - Scattering amplitude scale invariant, saturates unitarity bound
- Use as starting point for description of few-body properties
 - Large scattering length: $|a| \gg \ell \sim r_e, l_{vdW}, ...$
 - Natural expansion parameter: $\ell/|a|$, $k\ell$,...
 - Universal dimer with energy $B_2 = -1/(ma^2)$ (a > 0)

size $\langle r^2 \rangle^{1/2} \sim a \quad \Rightarrow \quad {\rm halo\ state}$

But Efimov effect in certain channels

EFT for the Unitary Limit

- Effective Lagrangian (Kaplan, 1997; Bedaque, HWH, van Kolck, 1999) $\mathcal{L}_{eff} = + + + + + + + + + +$
- 2-body coupling g_2 near fixed point (1/a = 0)
 - \Rightarrow scale and conformal invariance (Mehen, Stewart, Wise, 2000; Nishida, Son, 2007; ...)
- 3-body amplitude:
 - $g_3(\Lambda) \Rightarrow \text{limit cycle} \Rightarrow \text{discrete scale inv.}$

 \iff unitary limit

Three-Body Force: Limit Cycle

- RG invariance \implies running coupling $H(\Lambda) = g_3 \Lambda^2 / (9g_2^2)$
- $H(\Lambda)$ periodic: limit cycle $\Lambda \to \Lambda e^{n\pi/s_0} \approx \Lambda (22.7)^n$

(cf. Wilson, 1971)

 Anomaly: scale invariance broken to discrete subgroup

(Bedaque, HWH, van Kolck, 1999)

 $H(\Lambda) \approx \frac{\cos(s_0 \ln(\Lambda/\Lambda_*) + \arctan(s_0))}{\cos(s_0 \ln(\Lambda/\Lambda_*) - \arctan(s_0))},$

 $s_0 \approx 1.00624$

Limit Cycle: Efimov Physics

Universal spectrum of three-body states (Efimov, 1970)

- Discrete scale invariance for fixed angle ξ
- Geometrical spectrum for $1/a \rightarrow 0$

$$B_3^{(n)}/B_3^{(n+1)} \xrightarrow{1/a \to 0} e^{2\pi/s_0} = 515.035...$$

- Ultracold atoms \implies variable scattering length \implies loss resonances
- Nuclei \implies universal correlations and scaling relations

Universal Correlations

- 2 Parameters at LO \Rightarrow 3-body observables are correlated
 - ⇒ Phillips line (Efimov, Tkachenko, 1985; Bedaque, HWH, van Kolck, 2000)
- No four-body parameter at LO (Platter, HWH, Meißner, 2004)
 - \Rightarrow 4-body observables are correlated \implies Tjon line

- Variation of 3-body parameter generates correlations
- RG-evolved interactions: Λ dependence traces correlations (cf. Nogga, Bogner, Schwenk, 2004)

Efimov Plot

Window of universality

Efimov Physics in Halo Nuclei

Efimov effect in halo nuclei? (Fedorov, Jensen, Riisager, 1994)

 \implies excited states obeying scaling relations

• Correlation plot: $E_{nn} \leftrightarrow S_{1n}$ (Amorin, Frederico, Tomio, 1997)

adapted from Canham, HWH, Eur. Phys. J. A 37 (2008) 367

- Hypertriton
 - $np\Lambda$ bound state with $J^P = \frac{1}{2}^+$, I = 0
 - Λd separation energy: $B^{\Lambda} = 0.13 \pm 0.05 \text{ MeV}$
 - total binding energy: $B_3^{\Lambda} = 2.35 \text{ MeV}$
- EFT for large scattering lengths
 - \implies shallow hypertriton follows naturally
- Leading order EFT \Rightarrow S-wave interactions
 - ${}^3S_1(NN) + \Lambda \longrightarrow a_d \sim 1/\gamma_d$
 - ${}^3S_1(\Lambda N) + N \longrightarrow a_3 \sim 1/\gamma_3$
 - ${}^{1}S_{0}(\Lambda N) + N \longrightarrow a_{1} \sim 1/\gamma_{1}$
- Scattering lengths large compared to interaction range $(NN \rightarrow \pi\text{-exchange}, \Lambda N \rightarrow 2\pi\text{-exchange})$

- ΛN system unbound
- (Old) effective range analyses inconclusive (few data at relatively high energies)
 - $0 > a_1 > -15 \text{ fm}$ $0 < r_1 < 15 \text{ fm}$
 - $-0.6 \text{ fm} > a_3 > -3.2 \text{ fm}$ $2.5 \text{ fm} < r_3 < 15 \text{ fm}$
- Extractions using hyperon-nucleon potentials

 $a_1 \approx -2.9 \text{ fm}, \qquad a_3 \approx -1.6 \text{ fm}, \qquad \gg R \sim 1/(2m_\pi)$

(chiral EFT: Haidenbauer et al., Nucl. Phys. A 915 (2013) 24)

Characteristic three-body momentum

 $\gamma_3^{\Lambda} \sim 2\sqrt{|MB_3^{\Lambda} - \gamma_d^2|/3} \approx 14 \text{ MeV} \ll \sqrt{m_{\Lambda}(m_{\Sigma} - m_{\Lambda})} \approx 300 \text{ MeV}$

 $\Rightarrow \Lambda \Sigma$ conversion is short range \implies three-body force

Integral Equations for Hypertriton

HWH, Nucl. Phys. A705 (2002) 173; Hildenbrand, HWH, in preparation

- Strong cutoff dependence \implies renormalize with Λnp three-body force (cf. triton, bosons)
- Limit cycle with $s_0 = 1.0076$ (unequal masses)
- Scaling factor: $\exp \pi/s_0 \approx 22.60$
- Corrects error in original publication
- No room for excited states....

Λd Scattering

HWH, Nucl. Phys. **A705** (2002) 173

- Exact value of γ_i not determined by B_3^{Λ}
- Phase shifts independent of $\gamma_i \iff \text{shallowness of hypertriton}$
- Low-energy parameters:

$$a_{\Lambda d} = (16.8^{+4.4}_{-2.4}) \text{ fm} \text{ and } r_{\Lambda d} = (2.3 \pm 0.1) \text{ fm}$$

Hildenbrand, HWH, in preparation

- Correlation between hypertriton triton binding energy and S=1/2 Λd scattering length (cf. Phillips '68)
- Sensitivity to specific values of γ_i only for deeper binding
- Hypertriton wave function can also be extracted
- Production in heavy ion collisions?

- Breakup and recombination reactions of shallow atomic bound states at higher energy *E* (Braaten, Zhang, Phys. Rev. A 73, 042707 (2006))
- Factorization of amplitude if typical momenta between atom and bound state satisfy $k \gg 1/a \sim q, \ E \sim k^2/m$

- Final state interaction suppressed
- Works well for breakup reactions of ⁴He atoms
- Compare with exact calculation for recombination

• Three-body recombination rate coefficient K_3

(Braaten, Zhang, Phys. Rev. A 73, 042707 (2006))

- Interference terms important at low energies ($B_2 = 1.6 \text{ mK}$)
- Higher orders in atom-atom scattering amplitude

Extension to three-body bound states

Requires momentum space wave function of trimers

 \implies three-body problem requires numerical solution \implies dependence on a and Λ_*

- Extension to higher-body states possible
- Only bound state calculations with N-1 bodies required
- Closure relation for sum over all (initial/final) states

$$\int d^3r \sum_{X_{N-1}} |\langle X_{N-1} | \psi(r) | M \rangle|^2 = \int d^3r \langle M | \psi^{\dagger} \psi(r) | M \rangle = N$$

Application to heavy ion collisions?

Andronic et al. (2016)

Short-distance factor cancels in ratios?

Summary

- Effective field theory for unitary limit
- Universal aspects of (Discrete) Scale Invariance ⇔ Efimov physics
 - Effective field theory for threshold states

....

- Applications in atomic, nuclear, and particle physics
 - Cold atoms close to Feshbach resonance
 - Few-body nuclei: triton, hypertriton, halo nuclei, ...
 - Hadronic molecules: X(3872), ...
- Factorization for breakup and recombination reactions
 - Application to production of weakly-bound objects in heavy ion collisions?

Three-Body Recombination

Three-body recombination:

3 atoms \rightarrow dimer + atom \Rightarrow loss of atoms

- Recombination constant: $\dot{n}_A = -K_3 n_A^3$
- *K*₃ has log-periodic dependence on scattering length
 (Nielsen, Macek, 1999; Esry, Greene, Burke, 1999; Bedaque, Braaten, HWH, 2000)
- Deep dimers: Efimov trimers aquire width \Rightarrow resonances
- Loss term in short distance b.c.: $\Lambda_* \longrightarrow \Lambda_* \exp^{i\eta_*/s_0}$
- Universal line shape of recombination resonance (a < 0, T = 0)

$$K_3^{deep} = \frac{64\pi^2(4\pi - 3\sqrt{3}) \coth(\pi s_0)\sinh(2\eta_*)}{\sin^2\left[s_0\ln(a/a_-)\right] + \sinh^2\eta_*} \frac{\hbar a^4}{m}, \qquad s_0 \approx 1.00624..$$

and other observables . . .

Efimov States in Ultracold Atoms

- First experimental evidence in ¹³³Cs (Krämer et al. (Innsbruck), 2006) now also ⁶Li, ⁷Li, ³⁹K, ⁴¹K/⁸⁷Rb, ⁶Li/¹³³Cs
- Example: Efimov spectrum in ⁶Li/¹³³Cs mixture (Gross et al. (Bar-Ilan Univ.), Phys. Rev. Lett. **105** (2010) 103203)

• Van der Waals tail determines $a_-/l_{vdW} \approx -10 \ (\pm 15\%)$ (Wang et al., 2012; Naidon et al. 2012, 2014; ...) ... but not η_* ...

Universal Tetramers and Beyond

• Universal tetramers: $B_4^{(0)} = 4.610(1) B_3$, $B_4^{(1)} = 1.00227(1) B_3$

(Platter, HWH, 2004, 2007; von Stecher et al., 2009; Deltuva 2010-2013)

- Two tetramers attached to each trimer
- Universal states up to N = 16 calculated (von Stecher, 2010, 2011; Gattobigio, Kievsky, Viviani, 2011-2014)
- Observation up to N = 5 in Cs losses (Grimm et al. (Innsbruck), 2009, 2013)

Halo Nuclei

• Low separation energy of valence nucleons: $B_{valence} \ll B_{core}, E_{ex}$

 \longrightarrow close to "nucleon drip line" \longrightarrow scale separation \longrightarrow EFT

C.-B. Moon, Wikimedia Commons

• EFT for halo nuclei

(Bertulani, HWH, van Kolck, 2002; Bedaque, HWH, van Kolck, 2003; ...)

Halo Effective Field Theory

- Scales: $E \sim p^2/(2\mu) \sim 1/(2\mu R^2)$
- Separation of scales:
 - $1/k = \lambda \gg R_{core}$
- Limited resolution at low energy: \longrightarrow expand in powers of kR_{core}
- Short-distance physics not resolved
 - \longrightarrow capture in low-energy constants using renormalization
 - \longrightarrow include long-range physics explicitly
- Very low energies: only short-range physics \implies pionless EFT
- Exploit cluster substructures \implies Halo EFT

(G. Hagen, P. Hagen, HWH, Platter, Phys. Rev. Lett. 111 (2013) 132501)

- From many to few: emergence of halo degrees of freedom
- Coupled cluster calculations of ⁶⁰Ca and ⁶¹Ca using chiral N2LO two-body force and schematic three-body force:

 \Rightarrow ⁶¹Ca is a weakly bound S-wave state (or virtual state)

Prospects for excited Efimov states in ⁶²Ca:

$$S_{\text{deep}} = 1/(\mu_{cn}r_{cn}^2) \approx 500 \text{ keV}$$

scaling factor $\lambda_0 \approx 16$

 \implies possible if $S_{2n} \gtrsim 230 \text{ keV}$