Wrap-Up Wednesday

2nd EMMI Workshop: Anti-matter, hypermatter and exotica production at the LHC

Results and developments

Conclusion

E. Khan

- Microscopic view of universal hypernuclei chart, including strong decay of Λ into Ξ
- Investigation of hypernuclei structure
- Decoupling between hypernuclei physics and the ρ > 1.5 ρ_0 regime
- Large uncertainties due to the NA and YY interactions: more data on bond energy ?

- Future: excitations, pairing, deformation, temperature in hypernuclei
- Charmed nuclei ?

Future HY study with e beams

MAMI-Mainz

Decay π Spectroscopy of electroproduced HY

${}^{3}{}_{\Lambda}$ H Binding E.

Light Hypernuclei

Study of ΛN through nnΛ (Start Nov. 2018)

First Iso-spin dependence of medium heavy HY w/ best resolution (Prepare for 2020 run)

ELPH-Tohoku

Elementary Strangeness photo-production

^{3,4}_AH lifetime (2019-2020 run)

Compare experimental results with Theoretical Predictions of Binding Energies and Cross Sections Deduce AN Interaction including many-body forces

S. Nakamura

Solve Hyperon Puzzle, nn Λ Puzzle, ${}^{3}_{\Lambda}$ H Puzzle

Concluding Remarks

8 Nov, 2017

- Correlation measurement in HIC can constrain low energy scattering param.
 - New opportunity for multistrange systems
 - FSI contribution is sensitive to system size : Comparing small and large systems via C_{SL}(Q)
 - Different systems useful for disentangle other correlation origins
- Indirect search for dibaryon states
 - ΩΩ: Unitary regime, but statistically difficult
 - pΩ : Bound regime suppression of C_{SL}(Q)
 - p : Unitary regime enhancement of C_{SL}(Q)

2nd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

Kenji Morita (Wroclaw/Riken)

ΩΩ Correlation: Statistics? # of pair A(Q)

2nd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

K. Morita

Omega in ALICE

Summary and Outlook

- Femtoscopy in small systems is feasible
- New method to calculate different contributions to the total correlation function based on single particle properties
- Modelling of the correlation function with CATS
- Analysis of Run 2 Data in p-p at 13 TeV and p-Pb Collisions at 5 TeV ongoing
 - \succ Additionally obtain the Σ and Ξ Correlation Function
- <u>Universal and Robust Femto Analysis Tool</u>
 - > Fit the correlation function of various systems simultaneously in combination with CATS

L. Fabbietti

Summary

- Effective field theory for unitary limit
- Universal aspects of (Discrete) Scale Invariance ⇔ Efimov physics
 - Effective field theory for threshold states

....

- Applications in atomic, nuclear, and particle physics
 - Cold atoms close to Feshbach resonance
 - Few-body nuclei: triton, hypertriton, halo nuclei, ...
 - Hadronic molecules: X(3872), ...
- Factorization for breakup and recombination reactions
 - Application to production of weakly-bound objects in heavy ion collisions?

H.-W. Hammer

Shopping lists

Summary

- In Λ hypernuclei, if possible, it is interesting to produce nnnnΛ system at ALICE or GSI.
- 2. Now, we found that ΞN interaction is attractive.
- At Alice, it might be good idea to produce s-shell I hypernuclei to determine Spin-isospin term of IN inyteraction.
- Next, we should know the information on spin- and isospin-independent force. For this purpose, I would like to suggest to produce A=7 and 10 Ξ Hypernuclei using ⁷Li and ¹⁰B targets at J-PARC.
- 6. AA-EN interaction is also important. For this purpose, I suggest to produce
- ${}^{5}_{\Lambda\Lambda}$ H using 7Li target at J-PARC. And it might be good to produce ${}^{4}_{\Lambda\Lambda}$ H at ALICE.

E. Hiyama

Conclusions

- 1) ESC08c models predict stable and unstable di- tri- and up –baryons.
- 2) Other models (chiral quark models, effective field theories, lattice models) contain also considerable amounts of attraction and may generate similar results.

Summary & Outlook

- ΛN hypernuclear spin dependence deciphered.
- How small is Λ spin-orbit splitting and why?
- Role of 3-body ΛNN interactions in hypernuclei & neutron stars?
- Resolve the ${}^{3}_{\Lambda}$ H lifetime puzzle from HIC.
- Re-measure the ${}^{4}_{\Lambda}H {}^{4}_{\Lambda}He$ complex (E13 \rightarrow E63).
- Search for n-rich ${}^{A}_{\Lambda}Z$; ${}^{6}_{\Lambda}H$? (E10).
- Repulsive Σ-nuclear interaction; how strong? (relevant to neutron star matter & to strange hadronic matter).
- A. Gal
- Search for H dibaryon in (K^-, K^+) (E42).

- Onset of $\Lambda\Lambda$ binding: ${}_{\Lambda\Lambda}{}^{4}H$ or ${}_{\Lambda\Lambda}{}^{5}Z$? (E07).
- Shell model works well for g.s. beyond ${}_{\Lambda\Lambda}{}^{6}$ He.
- Study excited states by slowing down Ξ^- from $\bar{p}p \to \Xi^- \bar{\Xi}^+$ in FAIR (PANDA).
- Do Ξ hyperons quasi-bind in nuclei $(\Xi N \to \Lambda \Lambda)$? No quasibound Ξ established yet (E05).
- Onset of Ξ stability: ${}_{\Lambda\Xi}{}^{6}$ He or ${}_{\Lambda\Lambda\Xi}{}^{7}$ He?
- No \overline{K} condensation in self-bound matter. { N, Λ, Ξ } provides Strange-Hadronic-Matter g.s.

Thanks for your attention!

A. Gal

Future

Strangeness Nuclear Physics

strangeness in nuclei

- YⁿN^m interaction are important
- precision studies are needed
- after 60 still many puzzles

PANDA offers a broad physics program

- antihyperons in nuclei → PANDA day-1
- excited state spectroscopy of double hypernuclei

many things could not be mentioned

- hyper atoms
- neutron skin
- hyperon structure e.g. E2(Ω) ?
- mini p
 p collider ?

