# Wrap-Up Wednesday

2nd EMMI Workshop: Anti-matter, hyper-matter and exotica production at the LHC

# Results and developments

#### Conclusion

E. Khan

- Microscopic view of universal hypernuclei chart, including strong decay of  $\Lambda$  into  $\Xi$
- Investigation of hypernuclei structure
- Decoupling between hypernuclei physics and the  $\rho$  > 1.5  $\rho_0$  regime
- Large uncertainties due to the N $\Lambda$  and YY interactions: more data on bond energy?

- Future: excitations, pairing, deformation, temperature in hypernuclei
- Charmed nuclei?

# Future HY study with e beams

JLab E12-15-008(e,e'K+)

E12-17-003 (nnΛ)

#### MAMI-Mainz

Decay  $\pi$  Spectroscopy of electroproduced HY



<sup>3</sup><sub>A</sub>H Binding E.

Light Hypernuclei



Study of AN through nnA (Start Nov. 2018)

First Iso-spin dependence of medium heavy HY w/ best resolution (Prepare for 2020 run)

## **ELPH**-Tohoku



Elementary Strangeness photo-production

<sup>3,4</sup> H lifetime (2019-2020 run)

Compare experimental results with
Iheoretical Predictions of Binding Energies and Cross Sections

Deduce AN interaction including many-body forces

S. Nakamura

Solve Hyperon Puzzle,  $nn\Lambda$  Puzzle,  $^3_\Lambda$ H Puzzle

# **Concluding Remarks**

K. Morita

- Correlation measurement in HIC can constrain low energy scattering param.
  - New opportunity for multistrange systems
  - FSI contribution is sensitive to system size:
    Comparing small and large systems via C<sub>SL</sub>(Q)
  - Different systems useful for disentangle other correlation origins
- Indirect search for dibaryon states
  - $\bullet$   $\Omega\Omega$ : Unitary regime, but statistically difficult
  - $p\Omega$ : Bound regime suppression of  $C_{SL}(Q)$
  - $p\Xi$ : Unitary regime enhancement of  $C_{SL}(Q)$

### **ΩΩ** Correlation: Statistics?

K. Morita



## # of pair A(Q)



To have 100 pairs at low Q:

Acceptance × Efficiency: 0.01

Probability of events with more than  $2\Omega$  (assuming Poisson)

> 0.12 for 0-10% 10<sup>-4</sup> for 60-80%

10<sup>12</sup> - 10<sup>15</sup> events: unreachable at LHC

Not impossible at Future J-PARC ?(int. rate 108 Hz)

# Omega in ALICE





#### Summary and Outlook

- Femtoscopy in small systems is feasible
- New method to calculate different contributions to the total correlation function based on single particle properties
- Modelling of the correlation function with CATS
- Analysis of Run 2 Data in p-p at 13 TeV and p-Pb Collisions at 5 TeV ongoing
  - $\triangleright$  Additionally obtain the  $\Sigma$  and  $\Xi$  Correlation Function
- <u>Universal and Robust Femto Analysis Tool</u>
  - Fit the correlation function of various systems simultaneously in combination with CATS





## Summary



- Effective field theory for unitary limit
- Universal aspects of (Discrete) Scale Invariance ⇔ Efimov physics
  - Effective field theory for threshold states
  - ....
- Applications in atomic, nuclear, and particle physics
  - Cold atoms close to Feshbach resonance
  - Few-body nuclei: triton, hypertriton, halo nuclei, ...
  - Hadronic molecules: X(3872), ...
- Factorization for breakup and recombination reactions
  - Application to production of weakly-bound objects in heavy ion collisions?

H.-W. Hammer

# **Shopping lists**

#### Summary

- 1. In  $\Lambda$  hypernuclei, if possible, it is interesting to produce nnnn $\Lambda$  system at ALICE or GSI.
- 2. Now, we found that  $\Xi N$  interaction is attractive.
- 3. At Alice, it might be good idea to produce s-shell  $\Xi$  hypernuclei to determine Spin-isospin term of  $\Xi$ N inveraction.
- 5. Next, we should know the information on spin- and isospin-independent force. For this purpose, I would like to suggest to produce A=7 and  $10 \pm 10$  Hypernuclei using  $^{7}Li$  and  $^{10}B$  targets at J-PARC.
- 6.  $\Lambda\Lambda$ - $\Xi$ N interaction is also important. For this purpose, I suggest to produce  $^{5}_{\Lambda\Lambda}$ H using 7Li target at J-PARC. And it might be good to produce  $^{4}_{\Lambda\Lambda}$ H at ALICE.

E. Hiyama

### Conclusions

- ESC08c models predict stable and unstable di- tri- and up –baryons.
- Other models (chiral quark models, effective field theories, lattice models) contain also considerable amounts of attraction and may generate similar results.

H. Garcilazo

### Summary & Outlook

- $\Lambda N$  hypernuclear spin dependence deciphered.
- How small is  $\Lambda$  spin-orbit splitting and why?
- Role of 3-body  $\Lambda NN$  interactions in hypernuclei & neutron stars?
- Resolve the <sup>3</sup><sub>Λ</sub>H lifetime puzzle from HIC.
- Re-measure the  ${}^{4}_{\Lambda}H {}^{4}_{\Lambda}He$  complex (E13 $\rightarrow$ E63).
- Search for n-rich  ${}^{A}_{\Lambda}\mathbf{Z}$ ;  ${}^{6}_{\Lambda}\mathbf{H}$ ? (E10).
- Repulsive Σ-nuclear interaction; how strong? (relevant to neutron star matter & to strange hadronic matter).

A. Gal

• Search for H dibaryon in  $(K^-, K^+)$  (E42).

- Onset of  $\Lambda\Lambda$  binding:  ${}_{\Lambda\Lambda}{}^{4}H$  or  ${}_{\Lambda\Lambda}{}^{5}Z$ ? (E07).
- Shell model works well for g.s. beyond  ${}_{\Lambda\Lambda}{}^{6}{\rm He}.$
- Study excited states by slowing down  $\Xi^-$  from  $\bar{p}p \to \Xi^-\bar{\Xi}^+$  in FAIR (PANDA).
- Do Ξ hyperons quasi-bind in nuclei (ΞN → ΛΛ)?
   No quasibound Ξ established yet (E05).
- Onset of  $\Xi$  stability:  ${}_{\Lambda\Xi}^{6}$ He or  ${}_{\Lambda\Lambda\Xi}^{7}$ He?
- No  $\bar{K}$  condensation in self-bound matter.  $\{N, \Lambda, \Xi\}$  provides Strange-Hadronic-Matter g.s.

Thanks for your attention!

A. Gal

## **Future**



## Strangeness Nuclear Physics



#### strangeness in nuclei

- Y<sup>n</sup>N<sup>m</sup> interaction are important
- precision studies are needed
- after 60 still many puzzles

#### PANDA offers a broad physics program

- antihyperons in nuclei → PANDA day-1
- excited state spectroscopy of double hypernuclei

#### many things could not be mentioned

- hyper atoms
- neutron skin
- hyperon structure e.g.  $E2(\Omega)$ ?
- mini p̄ p collider ?

J. Pochodzalla