Status of the
Compressed Baryonic Matter Experiment at FAIR

Hans Rudolf Schmidt
University of Tübingen & GSI Darmstadt

EPS Conference on High Energy Physics
Venice, Italy 5-12 July 2017
Outline

• Physics: Exploration of Dense Matter with new, rare probes
 – Focus\(^(*)\) on strange matter
 • (sub)threshold production of multi-strange hyperons
 • (double)-hyper-nuclei
 \[\text{unique feature of CBM}\]

• Status of CBM
 – CBM-FAIR Phase 0 program

 \[\text{\(^(*)\) Not covered (because of time constraints)}\]
 • bulk observables
 – fluctuations, correlations,
 • Hadrons in Dense Matter
 – low mass vector mesons
 – charm & open charm
 • Dileptons
FAIR Accelerator Complex

GSI

CBM

SIS100 beams:
AuAu: 11 AGeV
pA: 30 GeV

FAIR:
fully operational
2015
Probing the QCD 3D-Phasedigramm

- equation of state (EOS) at neutrons star densities
- search for the limits of hadronic existence at moderate temperature and high density
- QCD critical end point

Note: at CBM energies
1 min CBM ~ 1 y

STAR@RHIC

Hans Rudolf Schmidt
QCD matter at finite baryon densities is not understood, neither experimentally nor theoretically!

Example:

recent observation of a $\frac{M}{M_\odot} \approx 2$ Neutron Star → hyperon puzzle

- not stable against gravitational collapse with soft EOS, i.e., a $2M_\odot$ NS should not exist!
- stable Neutron Star with quark-hadron mixed phase incl. hyperons possible (?)
 - EoS of hybrid matter (soft, hard ?)
CBM as a „Hyperon Factory“

Simulations: Au+Au at 8 A GeV, 10^6 central collisions
promise and challenge of CBM: data taking of a few seconds at 10^7 Hz

- sub-threshold production cross section of Ξ^-, Ω^- probes dense, baryonic matter...
- little data in the CBM energy range
- In addition: kaons and baryon resonances ($K^*,\Lambda^*,\Sigma^*,\Xi^*$)

Hans Rudolf Schmidt
Multi-Strangeness

search for
- hyperon correlations
 - $\Lambda\Lambda$, $\Lambda\Sigma$, ...
- double hyper-nuclei
 - $\Lambda\Lambda H$, $\Lambda\Lambda He$
- MEMOS*)
 - $(\Xi^0\Xi^-)_b$, $(\Xi^0\Lambda)_b$, ...

*) Metastable Exotic Multihypernuclear Objects

Hans Rudolf Schmidt
Di-Baryons and Hyperons Correlations at FAIR/CBM?

- copious production of hyperons (due to high rate) and favorable phase space make CBM@FAIR a:
 - di-baryon factory 😊

...but will at least provide good stat. correlation data (→ hyperon couplings) important to understand neutron star EoS
Search for Double Hypernuclei

conventional production mechanism)\textdagger):

\[
\begin{align*}
K^- & \quad \bar{s} \quad \bar{u} \\
N & \quad \bar{u} \quad \bar{d} \\
K^+ & \quad s \quad d \quad \Xi^- \\
& \quad \Xi^- + {}^{12}\text{C} \to \Lambda\Lambda^6He + {}^4He + t
\end{align*}
\]

heavy collisions: production via coalescence of Λ with light fragments

40 AGeV: 50 Λ's/central Au+Au collision
10 AGeV: 15 Λ's/central Au+Au collision

yield: \[10^{-6} \text{ } \Lambda\Lambda^5H, 3 \cdot 10^{-8} \text{ } \Lambda\Lambda^6He \text{ /central collision}\]

120/week \hspace{1cm} 3.6/week

\textsuperscript{)\textdagger) Takahashi et al, PRL 87 (2001)
The CBM Detector System

Micro Vertex Detector
Silicon Tracking System
Dipol Magnet
Ring Imaging Cherenkov

DAQ/FLES HPC cluster

HADES
p+p, p+A
A+A (low mult.)

Muon Detector
Time of Flight Detector
Transition Radiation Detector
EM calorimeter

Projectile Spectator Detector
Technical Design Reports

<table>
<thead>
<tr>
<th>#</th>
<th>Project</th>
<th>TDR Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Magnet</td>
<td>approved</td>
</tr>
<tr>
<td>2</td>
<td>STS</td>
<td>approved</td>
</tr>
<tr>
<td>3</td>
<td>RICH</td>
<td>approved</td>
</tr>
<tr>
<td>4</td>
<td>TOF</td>
<td>approved</td>
</tr>
<tr>
<td>5</td>
<td>MuCh</td>
<td>approved</td>
</tr>
<tr>
<td>6</td>
<td>HADES ECAL</td>
<td>approved</td>
</tr>
<tr>
<td>7</td>
<td>PSD</td>
<td>approved</td>
</tr>
<tr>
<td>8</td>
<td>MVD</td>
<td>submission 2017</td>
</tr>
<tr>
<td>9</td>
<td>DAQ/FLES</td>
<td>submission 2017</td>
</tr>
<tr>
<td>10</td>
<td>TRD</td>
<td>submission 2017</td>
</tr>
<tr>
<td>11</td>
<td>ECAL</td>
<td>submission 2017</td>
</tr>
</tbody>
</table>

⇒ CBM start version is ready to be build
At SIS-energies (and design spatial resolution < 25 µm) the momentum resolution is dominated by multiple scattering, i.e., for good momentum resolution the active area has to be practically massless.

- readout electronics outside of active area
 - ultra-thin (long!) readout cables
- ultra light support structure
 - carbon fiber (-> ALICE)
- 300 µm µstrip sensor with double sided stereo readout
Hades physics programm@SIS18 (p+p, p+A, Ag+Ag 1.65 AGeV)
- Multi-strange baryons
- \(\phi \) production study via \(K^+K^- \) and \(e^+e^- \)
- Dileptons around and beyond vector meson mass region

10% of the CBM TOF modules including read-out chain at STAR/RHIC (BES II 2019/2020)

Silicon Tracking Stations in the BM@N experiment at the Nuclotron in JINR/Dubna (Au-beams up to 4.5 A GeV in 2018/19)

CBM Project Spectator Detector at the BM@N experiment
mCBM@SIS18 (>2018)

Demonstrator for full CBM data taking and analysis chain

Test facility

- for high interaction rate operation (10MHz)
- free streaming readout
- online data compression

All CBM subsystems participating!
Summary

• CBM will measure rare probes at unprecedented interaction rates
• CBM (FAIR Phase-0) program starts 2018
• CBM (day-1 @ SIS100) starts 2025